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Abstract

The description of electromagnetic components and systems by electrical circuit
models is indispensable for a wide range of applications: In the field of Electro-
magnetic Compatibility (EMC), electrical circuit models are ideally suited for the
detection of EMC coupling paths, which are very difficult to track for 3-dimensional
(3D) geometries. In the field of numerical optimization techniques, electrical cir-
cuit models offer short simulation times and allow the coupling of the electromag-
netic domain to other physical domains. In the field of power electronics, electrical
circuit models describe energy dissipation due to parasitic electromagnetic interac-
tions.

Historically, electrical circuits and electromagnetic fields were developed as mod-
els for the description of electromagnetic phenomena at about the same time. The
description in terms of electromagnetic fields has turned out to be the more gen-
eral model, electrical circuits being a quasistatic approximation thereof. However,
in their range of validity, electrical circuits are intriguingly simple, compact and
intuitive description of electromagnetic processes. For purposes of analysis and
visualization, a description in terms of electrical circuits is often preferable. If
an electromagnetic system can be described in terms of an electrical circuit, the
electrical circuit model is called an equivalent electrical circuit.

The construction of an equivalent electrical circuit model is in general cumber-
some and less formalized than a description in terms of electromagnetic fields. No
general and reliable technique for the automated construction of equivalent elec-
trical circuit models exists. The aim of this thesis is the development of a technique
that allows a fully automated construction of equivalent electrical circuit models
from 3D geometry information. Instead of constructing the circuit directly from
geometry data, our approach consists of reducing a field-theoretical model to an
equivalent electrical circuit model. In this way, we exploit the generality of the
field-theoretical approach, which can be applied for a wide range of geometries us-
ing state-of-the-art simulation techniques. The electromagnetic effects having the
largest impact in the frequency range of interest are then used for the construc-
tion of the electrical circuit model. The circuit elements can be seen as condensed
representations of these field-theoretical processes. The reduction process allows a
very direct assessment of the accuracy of the electrical circuit model.
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Zusammenfassung

Die Beschreibung elektromagnetischer Komponenten und Systeme durch elektri-
sche Netzwerkmodelle wird in vielen Gebieten erfolgreich angewandt: Im Gebiet
der elektromagnetischen Verträglichkeit (EMV) ermöglichen elektrische Netzwerk-
modelle die einfache Detektion von EMV Koppelpfaden, die in dreidimensionalen
Modellen nur schwer zu identifizieren sind. Für numerische Optimierungsverfah-
ren sind die kurzen Rechenzeiten und die einfache Kopplung zu weiteren physikali-
schen Domänen attraktiv. Ersatzschaltbilder für leistungselektronische Komponen-
ten und Systeme beschreiben die Verschlechterung der Effizienz durch parasitäre
Vorgänge.

Historisch entstanden elektrische Netzwerke und elektromagnetische Felder als
Modelle zur Beschreibung elektromagnetischer Phänomene zu derselben Zeit. Die
Beschreibung durch elektromagnetische Felder hat sich als sehr allgemein und
präzise bewährt. Elektrische Netzwerke bilden eine quasistatische Approximation
des allgemeineren Modells. In ihrem Gültigkeitsbereich sind elektrische Netzwer-
ke jedoch sehr einfache, kompakte und intuitive Modelle für elektromagnetische
Komponenten und Systeme. Sie eignen sich daher oft besser als feldtheoretische
Modelle zur Analyse und Visualisierung der wichtigsten Vorgänge. Solche Netz-
werkmodelle werden Ersatzschaltbilder genannt.

Die Erstellung eines Netzwerkmodells ist oftmals mühsam und schwach forma-
lisiert im Vergleich zur feldtheoretischen Darstellung. Es existiert kein allgemein
anwendbares und verlässliches Verfahren zur Erstellung solcher Modelle. Im Rah-
men dieser Arbeit entwickeln wir ein Verfahren zur automatisierten Erstellung von
Netzwerkmodellen aus 3D Geometrieinformation. Anstatt das Netzwerkmodell di-
rekt aus Geometriedaten zu erstellen, kondensieren wir ein feldtheoretische Modell
zu einem Ersatzschaltbild. Wir nutzen damit den hohen Formalisierungsgrad der
feldtheoretischen Beschreibung. Diese kann durch moderne Simulationsverfahren
auf allgemeine Komponenten und Systeme angewandt werden. Zur Erstellung des
Ersatzschaltbildmodells werden dann nur diejenigen elektromagnetischen Vorgän-
ge berücksichtigt, die zur Beschreibung in einem gegebenen Frequenzbereich am
wichtigsten sind. Das Verfahren erzeugt damit sehr kompakte Modelle. Die Genau-
igkeit des Netzwerkmodells kann sehr direkt bewertet werden.
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1 Introduction

In 2010, the first Formula 1 car was designed using only computational methods. At
around the same time, virtual engineering became more and more a reality even in
industries having to comply with strict reliability and security requirements, e.g.,
the automotive or airplane industry. Very generally, Virtual Engineering covers a
wide range of computational methods which are integrated in the product devel-
opment process in order to design more powerful products in a faster and cheaper
way.

The increasing use of computational methods is due to more powerful hard-
ware, with memory availability and computational speed growing exponentially
with time, and to more intelligent software, allowing to predict the real behavior
of a component or system based entirely on computer simulations. In Fig. 1.1,
the conventional design process is shown on the left hand side, while a more ad-
vanced design process using virtual engineering is shown on the right hand side.
In this realistic depiction of an industrial design process, virtual engineering does
not completely replace the conventional process, but it is embedded in order to
make best use of its advantages. Virtual engineering allows shorter cycles at earlier
stages in the design process. There is no need for expensive and time-consuming
testing of prototypes. Design faults can be detected and corrected at an early stage,
where a redesign is comparably cheap.

In order for virtual engineering to work efficiently, two ingredients are needed.
First, it is indispensable to have at one’s hand simulation methods which predict
the behavior of the real device with sufficient accuracy and which need minimal
time. Second, there must be a way to extract from the simulation results as fast
as possible the relevant effects and interactions in order to improve the design
in a systematic and targeted way. For the purpose of brevity and illustration, we
refer to the first ingredient as predicting the behavior and to the second step as
understanding the behavior.

The work presented in this thesis is set in the framework of industrial develop-
ment of electromagnetic components and systems. For the purposes of industry,
the first ingredient is already available in great abundance in modern commer-
cial and open-source simulation tools. The second ingredient, however, is based
almost entirely on the working experience of experts in the field to perform a root-
cause analysis of the simulation results, extract the relevant fault mechanisms and
propose a redesign which eliminates the fault mechanisms.
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The numerical simulations used in the first ingredient are very powerful and
general tools. The description of practical electric components or systems in terms
of numerical simulations leads to algebraic systems with millions of degrees of
freedom. This high complexity makes it very difficult to find the root-cause of
unintended behavior, i.e., to understand the interactions leading to unwanted ef-
fects. Identifying the root-cause is indispensable before appropriate measures can
be defined to restore the desired behavior.

An a priori completely different approach to predicting the electric behavior of
electromagnetic components or systems is by way of an electrical circuit model.
Electrical circuit models can be seen as condensed descriptions of the physical re-
ality, i.e., the local properties of a complex electromagnetic field configuration are
reduced to a small set of effective parameters describing the electromagnetic behav-
ior. A description in terms of electrical circuit model has the following advantages:

• The low complexity of electrical circuit models greatly simplifies root cause
analysis. The root cause for unintended behavior can usually be attributed
to interactions of few circuit elements only. These interactions can easily be
detected and visualized.

• Most electrical engineers are more familiar with electrical circuit models
than with field theoretical descriptions of electromagnetic components and
systems. Electrical circuits are thus an intuitive way to visualize the func-
tionality as well as parasitic processes.

• The computation times of electrical circuit models are very short. Further-
more, electrical circuit models can be coupled with models from different
physical domains (e.g., thermal or mechanical models). This allows to run
extensive multi-domain optimization algorithms to find optimal designs for
all domains.

For an electrical circuit model to be used in this way, it has to satisfy several prop-
erties:

• The compactness requirement: The electrical circuit model has to be as
compact as possible while reproducing all interactions needed to describe
the behavior of the electromagnetic component or system in the domain of
operation. In other words, there are no circuit elements which obfuscate
analysis while not contributing significantly in the range of operation.

• The physicality requirement: The elements of the electrical circuit model
can be related to physical properties of the electromagnetic component or

12
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system. For example, each resistor or inductor in the electrical circuit model
can be attributed to a conductor while each capacitor can be attributed to
local charge accumulations.

• The accuracy requirement: An electrical circuit model is a priori a quali-
tative model for an electromagnetic component or system. We require that
the accuracy of the electrical circuit model can be controlled to guarantee
user-defined limits on accuracy1.

While the properties of electrical circuit models are very desirable, their genera-
tion is usually very cumbersome. Above, we indicated that electrical circuit models
describe both functionality and parasitic processes. This requires that, in general,
these processes and interactions already have to be known for the construction
of the electrical circuit model. In the literature, the construction of electrical cir-
cuits usually is a two-step process: First, a topology is proposed on the basis of
some intuitive understanding of the physical processes. Second, the parameters
of the electrical circuit are used as fitting parameters to maximize the quantitative
agreement with the real component or system. This procedure is little formalized,
depends heavily on the intuition of experts, and is the opposite of the ultimate goal,
i.e., to generate the understanding on the basis of an electrical circuit model rather
than the 3D model.

In this thesis, we propose a method to automatically generate electrical cir-
cuit models for arbitrary 3D electromagnetic components or systems with no prior
knowledge and understanding of functionality and parasitic processes. Our method
is a two-step process:

1. The electromagnetic component or system is analyzed on a 3D basis using
electromagnetic field simulations. This analysis is very general. In particular,
all physical interactions are included and very good quantitative results can
be expected. The 3D interactions are then separated into those interactions
which are relevant in the frequency domain of operation, and those interac-
tions which are irrelevant. This step is executed using an eigenmode analysis
and a decomposition of the spectrum in relevant and irrelevant eigenmodes.

2. The relevant interactions are modeled using circuit elements, all irrelevant
interactions are discarded. Both the topology and the values of the circuit

1 Improving the accuracy of any physical model always requires increasing the number of degrees
of freedom, i.e., shifting from a qualitative model to a quantitative model. Restricting ourselves
to limited accuracy allows to keep the number of degrees of freedom small and retain the
principal characteristic of electrical circuits, straightforward interpretability.
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elements can be derived directly from the 3D eigenmodes. The separation
of eigenmodes allows a very direct control of electrical circuit accuracy.

In Sect. 1.1 we illustrate in further detail the importance of electrical circuit
models. We show areas of application and summarize the state of the art in the
construction of electrical circuit models. In Sect. 1.2 we give a short outline of this
thesis.

1.1 Uses of Electrical Circuit Models

The use of electrical circuits is very widespread in industry and in science. In this
section, we illustrate in greater detail three main areas of application of electrical
circuit models: First, the use of electrical circuit models to perform a root cause
analysis or study different design variants. Second, the use of electrical circuits as
simple models for complex 3D components and systems. Third, the use of electrical
circuits for fast coupled simulations and multi-domain optimizations.

1.1.1 Design Evaluation and Root Cause Analysis

The typical problem in the design process of electromagnetic components is an
electromagnetic behavior which differs from the intended behavior. The primary
goal in this situation is to quickly determine the root cause for the unintended
behavior and to remove it by redesign or suitable filters. Due to their compact
size and the limited set of possible interactions, electrical circuits are well suited to
perform a root cause analysis.

One of the first systematic applications of electrical circuit models arose in the
modeling of interconnects in Very Large Scale Integrated (VLSI) circuits. At high
frequencies, inductances of (physically) long interconnects become relevant. Elec-
trical circuit models are used for both quantitative [1] and qualitative [2] analysis.
With the Partial Element Equivalent Circuit (PEEC) method [3], a systematic way
to construct electrical circuit models for typical integrated circuit structures was
introduced.

The use of electrical circuits is very widespread in power electronics. In power
electronics applications, the functionality is determined by non-linear lumped cir-
cuit elements, e.g., diodes and Insulated-Gate Bipolar Transistor (IGBT). Instead of
including the active elements in field simulations or ignoring the distributed circuit
design in a pure circuit simulation, the easiest way of describing such a system is
by coupling the non-linear circuit elements with an equivalent electrical circuit for
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the passive geometry to describe the parasitic impact of the latter, e.g., inductances
of busbars [4] and unbalanced current sharing [5]. In [6], electrical circuit models
are used to discuss different topologies for resonant switching converters.

One of the main fields of application of electrical circuit models is EMC. EMC
deals with the detection and elimination of unintended electromagnetic effects. In
[7], the impact of parasitic inductances of the power supply lines on the device
behavior is investigated and an optimal strategy for the positioning of decoupling
capacitors is derived. For these positions to be well defined physically, the link
between geometry (physical positions) and electrical circuit model (inductors) is
crucial. In [8], the effect of parasitic couplings in Electromagnetic Interference
(EMI) filters is studied using electrical circuit models for different filter topologies.

A very general method for root-cause analysis is a sensitivity analysis which
allows to quantify the impact of model parameters on electromagnetic behavior.
A general method for a sensitivity analysis of electrical circuits is introduced in [9].
In [10], the method is applied to a circuit of partial inductances generated by the
PEEC method.

1.1.2 Simple Description for Complex Processes

The equations of motion of electrical circuits (Chap. 2) contain only a limited set
of three basic interactions (resistive, inductive, and capacitive). When large sys-
tems of elementary interactions are allowed, the response can nevertheless be very
complex. In fact, it can be shown that any system of ordinary differential equa-
tions can be written in terms of an equivalent electrical circuit [11]. Equivalently,
it can be shown that every system with a response that can be written as a rational
function with respect to some parameter (usually the frequency) can be described
in terms of an equivalent electrical circuit [12, 13]. In general, these circuits are
purely mathematical objects. In this thesis, we restrict ourselves to electrical circuit
models which illustrate and reproduce the basic physical processes.

Electrical circuit models can be used for the modeling of frequency-dependent
material properties. In [14], an electrical circuit model is used to illustrate the
impact of the substrate on the quality factor of spiral inductors for, e.g., Radio-
Frequency Identification (RFID) tags. In [15], the impact of patterned shields on
the quality factor is studied using an electrical circuit models. The circuits used in
these applications are constructed from an existing understanding of physical cou-
plings, the circuit elements are phenomenological descriptions of these processes.
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Electrical circuits can also be used to describe different operating conditions of
battery systems. The electrical circuits are constructed by first proposing a topol-
ogy based on the physical processes in the battery and second parametrizing the
circuit elements to comply with the real behavior of the battery [16]. The range
of applications is very wide and covers runtime effects [17] as well as short-time
behavior [18].

1.1.3 Coupled Simulations

The design process of components and systems is never restricted to a single do-
main. Instead, requirements from different domains, e.g., the electromagnetic,
thermal and mechanical domains, have to be met simultaneously. On the com-
putational level, this requires coupling of the physical models. Electrical circuits
are very well suited to coupled simulations. Their computation time is low and
coupling mechanisms are known for a variety of domains.

Coupling of electromagnetic and mechanical models is important, e.g., in the
modeling of piezoelectric devices. The coupling of an electrical circuit model with
appropriate mechanical models is described, e.g., in [19, 20].

In power electronics applications, heat management is a crucial factor for good
device design and thermo-mechanical breakdown a major factor limiting lifetime,
[21]. A very general procedure for the coupling of electrical circuit models and
thermal models is presented in [22, 23]. In [24, 25], thermal component mod-
els for semiconductor devices are constructed and coupled with electrical circuit
models. On the system level, [26] describes the coupling of electrical circuits with
thermal models to describe entire power modules. In [27], an inherently cou-
pled problem, a superconducting fault current limiter, is described in terms of an
electrical circuit coupled with a corresponding equivalent thermal circuit.

1.2 Outline of the Thesis

In Chap. 2, the electrical circuit model for the description of electromagnetic com-
ponents and systems is introduced. The equations of motion for electrical circuits
are Kirchhoff’s equations. Kirchhoff’s equations are supplemented by a set of con-
stitutive equations for the circuit elements. The circuit elements are defined us-
ing energy concepts. With the Fourier transform, electrical circuit theory can be
transformed from the time domain to the frequency domain. Using the theory of
graphs, electrical circuit theory can be formulated on a strictly mathematical basis.
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It is shown that all information about the electrical circuit is contained in a matrix
polynomial in the complex frequency. The coefficient matrices of different orders
are directly related to the different types of circuit elements.

In Chap. 3, field theoretical models for electromagnetic components and systems
are described. The equations of motion of electromagnetism are the macroscopic
Maxwell’s equations. The field-theoretical model of Maxwell’s equations is com-
pared with the electrical circuit model from the previous chapter. It is shown that
electrical circuits cannot describe all electromagnetic phenomena incorporated in
Maxwell’s equations. We therefore show a quasistatic approximation of Maxwell’s
equations, Darwin’s model, which exhibits the same range of phenomena as elec-
trical circuits. The link between electrical circuit models and the field theoretical
Darwin model is established using energy concepts.

In Chap. 4, discretization schemes are introduced which allow to implement
and solve electromagnetic systems on a computer. In this thesis, the Finite Ele-
ment Method (FEM) is mainly used. We also introduce important features of the
PEEC Method, which is the state-of-the-art method for the construction of electrical
circuit models.

In Chap. 5, the theory of polynomial eigenvalue problems is introduced. In this
thesis, the theory of eigenfrequencies and eigenmodes is used to separate relevant
from irrelevant phenomena in the frequency range of interest. Neglecting irrelevant
phenomena enables us to construct very compact, but still accurate electrical circuit
models. We also show how practical eigenvalue problems can be solved using a
numerical scheme, the Lanczos method.

In Chap. 6, all concepts from the previous sections will be combined to yield a
procedure to automatically construct electrical circuit models for electromagnetic
components and systems. The procedure will consist of two steps: In the first
step, the component or system is described using a field-theoretical model. The
field theoretical model is very general and includes all physical couplings. After
performing an eigenmode analysis, irrelevant couplings are automatically removed
when all eigenmodes with eigenfrequencies outside the frequency range of inter-
est are discarded. In the second step, the remaining 3D eigenmodes are projected
on eigenmodes of an appropriate electrical circuit model. The explicit form of the
electrical circuit model can be constructed from its eigenmodes. By construction,
the electrical circuit model only contains the most relevant effects in the frequency
range of interest and is very compact. The circuit elements can be related to physi-
cal quantities and design features. The accuracy of the electrical circuit model can
be controlled very directly.
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In Chap. 7, our method is tested and applied to realistic examples. As sanity
check, we compute electrical circuit models for conductor geometries for which
analytical expression are known and prove the validity of both our method and the
implementation. Our method is then applied to realistic examples describing real
products from an industrial partner, Robert Bosch GmbH, [28].

18
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Define Requirements
(functionality, price, legal norms, size)

Sell Product.

Design Process

Construct Prototype

Check Requirements
 

Ø

Design Process

Virtual Prototype

Check Requirements
in Simulation

Construct Prototype

Confirm Requirements

 
Ø

Conventional Design Virtual Design

Figure 1.1.: Industrial design process with and without virtual engineering

19

www.Techbooksyard.com



www.manaraa.com
www.Techbooksyard.com



www.manaraa.com

2 Electrical Circuits

Electrical Circuits are simple but powerful models for the description of electromag-
netic components and systems. The equations of motion for electrical circuits are
Kirchhoff ’s equations. Kirchhoff ’s equations are supplemented by a set of constitutive
equations for the circuit elements. The circuit elements are defined using energy con-
cepts. In following chapters, these energy concepts will establish the connection to the
field theoretical description. With the Fourier transform, electrical circuit theory can
be transformed from the time domain to the frequency domain.

Using the theory of graphs, electrical circuit theory can be formulated on a strictly
mathematical basis. It is shown that all information about the electrical circuit is con-
tained in a matrix polynomial in the complex frequency. The coefficient matrices of
different orders correspond to the different types of circuit elements. This matrix poly-
nomial will be analyzed in Chap. 6 using the spectral theory of matrix polynomials.

2.1 Electrical Circuit Theory

The subject of electrical circuit theory is the study of the properties of electrical
circuits. An electrical circuit is built up from vertices (nodes) which are connected
by edges (circuit elements). A generic electrical circuit is shown in Fig. 2.1.

Put very simply, the nodes of the electrical circuit are capable of accumulating
electric charge q while the edges are capable of supporting the flow of electric cur-
rent I from one node to another node. The (differential) charge transfer between
the end nodes of an edge is related to the current flowing to the edge by

I =
dq
dt

. (2.1)

Electric currents result from energy differences. These energy differences are
described in terms of voltages. More precisely, if a current I flowing along an
edge leads to a (differential) change in electromagnetic energy dE

dt , the voltage V
assigned to the edge is equal to

V =
dE/dt

I
=

P
I

. (2.2)

P = dE
dt is the power, i.e., the amount of energy per time, flowing through a

circuit edge.
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L1
C1

R1I1

C2 L2

R2

0 1 2

3 4 5

Figure 2.1.: Generic electrical circuit

2.1.1 A List of Circuit Elements

In the previous section, we showed that the currents and the voltages in a circuit
edge are not independent. The edges can be assigned different types of circuit
elements, each circuit element is characterized by its current-voltage relationship.

Ohmic Resistor

In an Ohmic resistor, electrical energy is dissipated, i.e., it is converted to a different
kind of energy, heat. In an ideal Ohmic resistor, the rate of energy conversion, i.e.,
the power, is proportional to the square of the current flowing though the element

P = R · I2. (2.3)

The proportionality constant R is called the resistance, with unit Ohm, [R] = 1Ω =
1 V/A. For an ideal Ohmic resistor, it is independent of time and, in particular,
independent of current through the element. From the power (2.3), the current-
voltage relationship for an ideal Ohmic resistor can be derived using (2.2),

V = R · I . (2.4)

Eq. (2.4) describes a linear relation between current and voltage. The ideal Ohmic
resistor therefore belongs to the group of linear circuit elements. Furthermore, an
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Ohmic resistor is a passive device, in which electrical energy can be dissipated, but
never generated. In a circuit diagram, such as Fig. 2.1, a resistor is drawn as in
Fig. 2.2.

R

Figure 2.2.: Resistor

Inductor

An inductor stores magnetic energy when there is a current flowing through it. The
energy stored in an inductor is proportional to the square of the current

E =
L
2
· I2. (2.5)

The proportionality constant L is called the inductance, with unit Henry, [L] =
1 H = 1 Vs/A. For an ideal inductor, it is independent of time and the current
through the element. The current-voltage relationship of an inductor can again be
derived using (2.2),

P =
dE
dt
= L · I ·

dI
dt

⇒ V = L ·
dI
dt

. (2.6)

For an ideal inductor, the relation between current and voltage is linear, i.e., the
ideal inductor belongs to the group of linear circuit elements. An ideal inductor can
store or release previously stored magnetic energy. However, energy can neither
be generated nor dissipated. It therefore belongs to the group of passive circuit
elements. In a circuit diagram, an inductor is drawn as in Fig. 2.3.

L

Figure 2.3.: Inductor
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Capacitor

A capacitor stores electrical energy when it is loaded with electric charge. The
electrical energy is proportional to the square of the charge,

E =
1

2C
·Q2. (2.7)

The proportionality constant C is called the capacitance, with unit Farad, [C] = 1 F
= 1 As/V. For an ideal capacitor, it is independent of time and the charge stored in
the capacitor.

For purposes of formulation, the charges is usually replaced by a formal current,
the displacement current IC ,

Q =

∫ t

−∞
IC(t

′)dt ′. (2.8)

The displacement current IC is a formal current because, unlike conduction cur-
rents, it does not involve the transfer of electric charge. The relationship between
current and voltage in a capacitor can again be derived from the power

P =
dE
dt
=

1
C
· IC ·

∫ t

−∞
IC(t

′)dt ′ ⇒ V =
1
C

∫ t

−∞
I(t ′)dt ′. (2.9)

For an ideal capacitor, the relation between current and voltage is linear, i.e., the
ideal capacitor belongs to the group of linear circuit elements. A capacitor can
store or release previously stored electrical energy. However, energy can neither be
generated nor dissipated. The capacitor therefore belongs to the class of passive
circuit elements. In a circuit diagram, a capacitor is drawn as in Fig. 2.4.

C

Figure 2.4.: Capacitor
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2.1.2 Current and Voltage Sources

An electrical circuit with only passive circuit elements has zero currents and volt-
ages at all times, unless it is excited by a source of electrical energy. The most
simple source of electrical energy are ideal current and voltage sources.

As indicated by the name, a current source provides energy by driving an elec-
trical circuit with a (in general time-dependent) source current. This current is
independent from the voltage drop needed to keep the current flowing. Similarly, a
voltage source provides energy by specifying a (in general time-dependent) voltage
between different parts of the electrical circuit. The voltage is independent of the
current flow needed to maintain the voltage level.

We emphasize that current and voltage sources do not always provide electrical
energy. They can also extract energy from an electrical circuit, which has previously
been stored in inductors and capacitors. By definition, current and voltage sources
belong to the group of active circuit elements. In a circuit diagram, current and
voltage sources are drawn as in Fig. 2.5 and 2.6 respectively.

I

Figure 2.5.: Current source

V

Figure 2.6.: Voltage source

2.1.3 Kirchhoff’s Laws

For electrical circuits to form a meaningful physical model, it is essential that the ba-
sic principles of physics are respected. In the case of electrical circuit, the principles
involved are conservation of charge and conservation of energy. These principles
are reflected in the equations of motion of electrical circuits, Kirchhoff’s equations:

Kirchhoff’s current law is a statement of conservation of charge, [29]. More
precisely, it states that electric currents describe the time-rate of change of electric
charge and that the total electric charge is constant:

Theorem 2.1. The algebraic sum of all edge currents leaving a node is zero at all
instants of time.

It is crucial to note that the total current can consist of different contributions,
e.g., conduction currents in resistors or inductors, source currents in current and
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voltage sources, and displacement currents in capacitors. Kirchhoff’s current law,
Thm. 2.1, treats all these currents on the same footing, i.e., the total current is the
sum from all contributions.

Kirchhoff’s second law, also called Kirchhoff’s voltage law, is a statement of en-
ergy conservation, [29]. By definition in (2.2), the change in electrical energy
involved with a current through a circuit element is proportional to the voltage
drop along the circuit element. Considering a constant current flowing trough a
loop of edges, the power is proportional to the algebraic sum of the corresponding
voltages. Energy conservation requires that energy can neither be generated nor
destroyed, hence it follows

Theorem 2.2. The algebraic sum of edge voltages around any loop is zero at all
instants of time.

2.2 The Fourier Transform

Kirchhoff’s equations and the constitutive equations of the circuit elements form a
system of integro-differential equations with respect to time. For such a system of
equations, different approaches are feasible for different situations:

• In order to describe the response of a system with respect to a time-
dependent signal, it is feasible to directly solve the integro-differential equa-
tions. This requires the specification of boundary conditions in space and
time, [30]. For example, in the modeling of an electric discharge process,
the test component is excited by a strong current pulse at time zero. The
pulse and the subsequent relaxation process to the stationary state is best
described in time-domain.

• In order to describe the response of a system with respect to a time-harmonic
signal, it is feasible to replace time by frequency as parameter, i.e., to trans-
form the problem into frequency domain. For example, an antenna is driven
by a signal which is essentially time-harmonic with weak modulation in fre-
quency or amplitude.

In general, a transform reformulates a mathematical expression in another do-
main. The importance of transforms stems from the fact that mathematical oper-
ations can take different forms in different domains. A suitably chosen transform
can greatly simplify the solution of an operator equation.
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In this thesis, the frequency domain is described in terms of the Fourier trans-
form. The description starts with a function f (t) in time domain. Formally, this
function can be written as a superposition of Dirac delta functions δt′(t) = δ(t ′− t)
in time,

f (t) =

∫ ∞

−∞
f (t ′)δ(t ′ − t)dt ′ =

∫ ∞

−∞
f (t ′)δt′(t)dt ′.

In other words, f (t ′) can be interpreted as the coefficient of a basis function,
δt′(t) = δ(t ′ − t). The transformation into frequency domain corresponds to a
change of basis functions. More precisely, the basis of delta functions is replaced
by a basis of complex exponential functions,

f (t) =
1

2π

∫ ∞

−∞
F(ω)e jωtdω. (2.10)

The coefficient function F(ω) is called the Fourier transform of f (t), F =F [ f ]. It
can be computed from f (t) by

F f (ω) = F(ω) =

∫ ∞

−∞
f (t)e− jωtdt. (2.11)

We conclude that representations in time and frequency domain are equivalent
and can be transformed into one another. In order to simplify notation, we use the
complex frequency s = jω instead of ω in the following.

The great advantage of the Fourier transform in the study of integro-differential
problems is the transformations of the mathematical operations of differentiation
or integration in time-domain to algebraic multiplication and division in frequency
domain, [31], i.e.,

g(t) = d
dt f (t) ⇔ G(s) = sF(s)

g(t) =
∫ t

−∞ f (t ′)dt ′ ⇔ G(s) = 1
s F(s).

(2.12)
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2.3 Electrical Circuit Analysis

In this section we study the properties of electrical circuits in time- and frequency
domain. The first step is a mathematical formulation of the circuit theory presented
above. This mathematical formulation is based on graph theory and results in a ma-
trix representation of electrical circuits. In a second step, the matrix representation
can be studied with the powerful toolset of matrix algebra.

2.3.1 Graph Theory

An electrical circuit is a special form of a oriented graph. An oriented graph G(V, E)
consists of a set of vertices, V = {v1, · · · , vn}, and a set of edges, E = {e1, · · · , em}.
Each edge is an ordered pair of vertices, ek = (vk1

, vk2
). A generic graph is shown

in Fig. 2.7. This graph consists of six vertices, v1 - v6, and seven edges, e1 - e7. The
arrows on the edges indicate the orientation, i.e., e1 = (v1, v2), etc. In the analysis
of electrical circuits, the vertices are associated with the nodes of the circuit, the
edges are associated with the circuit elements, and the orientation of the edges
corresponds with the reference direction for current and voltage.

v1 v2 v3

v4 v5 v6

e1 e2

e3

e4 e5

e6 e7L1 L2

Figure 2.7.: Oriented graph

A chain is an ordered set of edges (±ek1
, · · · ,±ekl

) such that neighbouring edges
are adjacent in the same node. The signs of the edges indicate the direction in
which they are traversed. A chain which ends at its start vertex is called closed.
A closed chain where each vertex is traversed only once is called a loop. In Fig.
2.7, for example, the chain L1 = (e1, e3, e4,−e6) forms a loop. A graph is called
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connected if for each pair of vertices there exists a chain connecting them. Electrical
circuits can in general be assumed to be connected; if they are not, the connected
subgraphs can be analyzed separately.

A subgraph G′ = (V ′, E′) is a graph with V ′ ⊂ V and E′ ⊂ E. A subgraph T of G
is called a tree if it is connected and does not contain loops. If a tree contains all
vertices of the original circuit, it is called spanning. For the graph in Fig. 2.7, the
bold edges form a spanning tree. A tree has the important property that whenever
an edge of G is added to T , provided it is not already part of T , exactly one loop
is formed. This loop is called a fundamental loop. When, for example, the edge
e6 is added to the tree in Fig. 2.7, the fundamental loop L1 is formed. Similarly,
adding the edge e7 results in the fundamental loop L2 to be formed. Trees and
fundamental loops are important concepts in the study of electrical circuits. It is
shown below that the edges of a spanning tree specify all independent voltages
while the fundamental loops specify all independent currents.

In the following, we present a mathematical formulation of graphs based on ma-
trix algebra. This formulation allows to use a wide range of already existing work
on matrices. The topology of a general graph can be described by the incidence
and loop matrices [32]. The incidence matrix Ã describes the adjacencies of the
edges,

Ãkl =







+1 if l-th edge ends at k-th vertex

−1 if l-th edge starts at k-th vertex

0 otherwise

(2.13)

As each edge starts and ends at exactly one node, the sum of all columns of the
incidence matrix is zero. In order to remove redundant information, one row of
the incidence matrix can be deleted. The corresponding vertex is distinguished as
a reference vertex. In electrical circuits, the reference vertex corresponds to the
ground node. The resulting matrix is called reduced incidence matrix, A= Ãreduced.
In the following, when we use the word ‘incidence matrix A’, we always mean the
reduced incidence matrix Ãreduced. For example, defining v1 as the reference vertex
for the graph in Fig. 2.7, the incicdence matrix reads

A=











1 −1 −1 0 0 0 0
0 1 0 0 0 0 −1
0 0 0 1 0 1 0
0 0 1 −1 −1 0 0
0 0 0 0 1 0 1











.
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The topology of a graph is completely described by its incidence matrix: The num-
ber of vertices is equal to the number of rows of the incidence matrix plus one,
the number of edges is equal to the number of columns. Two distinct vertices are
connected by an edge if there exists one column in the incidence matrix where
the corresponding matrix entries are +1 and -1 respectively. The incidence matrix
cannot describe self-loops, i.e., edges starting and ending at the same vertex. How-
ever, for electrical circuits, self-loops can be removed from the analysis because the
voltage drop along the corresponding edge is always zero.

Similarly, the fundamental loop matrix describes all fundamental loops in a
graph. It is defined by

Bkl =







+1 if the k-th loop traverses the l-th edge in positive direction

−1 if the k-th loop traverses the l-th edge in negative direction

0 otherwise

(2.14)

The graph in Fig. 2.7, has two fundamental loops, L1 and L2. The corresponding
fundamental loop matrix reads

B=
�

1 0 1 1 0 −1 0
0 1 −1 0 −1 0 1

�

.

It can be shown, that a graph is also described completely by its fundamental loop
matrix, even though reconstructing the actual graph is more difficult, [32]. The
fundamental loop matrix cannot describe pendant vertices, i.e., vertices which are
not part of any loop. Again, for electrical circuits, pendant vertices can be removed
from the analysis because the current flow through the adjacent edge is always
zero.

The incidence matrix A and the fundamental loop matrix B are dual descrip-
tions for the topology of graphs. The incidence matrix is based on the relationship
between edges and vertices while the loop matrix is based on the relationship be-
tween edges and loops. This duality is reflected by the following theorems, which
are very useful in analysis of an electrical circuits.

Theorem 2.3. Let G(V, E) be a (self-loop free) graph, A and B its incidence and
fundamental loop matrix respectively. Then, [32],

B ·AT = 0 A ·BT = 0. (2.15)
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Theorem 2.4. For a connected graph with n+1 vertices and e edges, the ranks of the
reduced incidence and the fundamental loop matrix are given by, [32],

rank(A) = n rank(B) = e− n. (2.16)

From the relationship between the incidence and the loop matrices, it follows in
particular that

Corollary 2.1. Let G(V, E) be a connected graph with incidence matrix A and funda-
mental loop matrix B. The null space of B is spanned by the rows of A, the null space
of A is spanned by the rows of B, i.e.,

Ax= 0⇔∃x̃ : x= BT x̃ Bx= 0⇔∃x̃ : x= AT x̃. (2.17)

2.3.2 Electrical Circuits in Terms of Graphs

In order to describe electrical circuits as graphs, the circuit quantities have to be
identified with objects from graph theory, [33]:

• The set of nodes of an electrical circuit corresponds to the set of vertices of
the corresponding graph.

• The set of edges of an electrical circuit corresponds to the set of edges of the
corresponding graph.

• The reference directions for voltage and current in an electrical circuit cor-
responds to the orientations of the edges of the corresponding graph.

Having identified the electrical circuit with a graph, the circuit can be expressed
in mathematical form. In particular, it is possible to define the incidence matrix A
and the fundamental loop matrix B for the circuit. Furthermore, the edge voltages
and currents can be expressed in vectorial form, V and I respectively. With these
definitions, Kirchhoff’s current law (Thm. 2.1) reads, [33],

AI= 0, (2.18)

and Kirchhoff’s voltage law (Thm. 2.2) reads, [33],

BV= 0. (2.19)
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In order to incorporate the constitutive equations, the current and voltage vec-
tors, I and V are each decomposed into four parts IR, IL , IC , Is, VR, VL , VC , and
Vs respectively. IR, VR are all currents and voltages in resistive edges, IL , VL all
currents and voltages in inductive edges. IC describes the displacement currents in
the capacitors, VC describes the corresponding capacitor voltages. Furthermore, Is
and Vs are the currents and voltages in those edges belonging to current or voltage
sources. The total edge current and edge voltage vectors are the direct sums of the
subvectors,

I= IR⊕ IL ⊕ IC ⊕ Is V= VR⊕VL ⊕VC ⊕Vs .

The constitutive equations for the circuit elements can now be written in both time-
and frequency domain in the following vectorial form:

VR(t) = RIR(t) ⇔ VR(s) = RIR(s) (2.20)

VL(t) = L
d IL(t)

dt
⇔ VL(s) = s L IL(s) (2.21)

VC(t) =

∫ t

−∞
C−1 IC(t

′)dt ′ ⇔ VC(s) =
1
s

C−1 IC(s) (2.22)

The resistance and capacitance matrices, R and C, are diagonal. The inductance
matrix L is dense and symmetric. The diagonal elements Lk = Lkk contain the
self inductances of all inductors, the off-diagonal elements Mkl = Lkl contain the
mutual inductances between inductors. The dimensionless coupling factors Kkl =
Mkl/

p

Lkk Ll l are smaller than 1 for realistic systems.

The total Ohmic loss rate P, and the total inductive and capacitive energies, EL
and EC respectively, will play a crucial role in the eigenmode analysis of electrical
circuits in later chapters. For future reference, we express these quantities in terms
of circuit matrices. In order to generalize (2.3), (2.5), and (2.7) to circuits with
many circuit elements, the contributions from the individual circuit elements have
to be added. In matrix form, this result can be written in terms of edge currents as

P = IT
R RIR EL =

1
2

IT
L L IL EC =

1
2s2

IT
C C−1 IC , (2.23)

or, equivalently, in terms of edge voltages as

P = VT
R R−1 VR EL =

1
2s2

VT
L L−1 VL EC =

1
2

VT
C CVC . (2.24)
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2.3.3 The Nodal Approach

In the previous section, electrical circuits were described in terms of algebraic quan-
tities, i.e., in terms of matrices and vectors. In this section, the equations of motion
solved, i.e., the current and voltage vectors are computed for a given configura-
tion of current or voltage sources. In the following, only the frequency domain
expression will be considered.

First, note that the edge currents can be computed from the edge voltages and
vice versa using the constitutive equations of the circuit elements, (2.20)-(2.22).
It thus suffices to solve Kirchhoff’s equations for one set of either edge currents or
edge voltages only. In the nodal approach, only the edge voltages are computed.

Second, it can be shown that even the set of edge voltages does not constitute
linearly independent unknowns. This is because the set of solutions is restricted by
Kirchhoffs’s voltage law, (2.19). Using the relations in Corollary 2.1, there exists a
vector Φ such that

V= AT Φ. (2.25)

The vector Φ is called the vector of node potentials.

The above relationship can be interpreted such that each node of the electrical
circuit is assigned a potential and the voltage drop along an edge between two
nodes is equal to the difference in potential between these nodes1. Adding the same
constant to all node potentials leaves the edge voltages invariant. This arbitrariness
is removed in the above scheme by using the reduced incidence matrix. The node
which is used to reduce the node incidence matrix is implicitly assigned a zero
potential which fixes all other potentials relative to this reference node.

Before continuing the derivation, we decompose the electrical circuit G into sub-
graphs GR, GL , GC and Gs. The subgraphs are chosen such that GR contains all
edges with resistors, GL contains all edges with inductors, GC all edges with ca-
pacitors, and Gs contains all edges with current sources. Each subgraph defines its
own incidence matrix AR, AL , AC , and As respectively. The incidence matrices of
the subgraphs correspond to submatrices of the total incidence matrix,

A= AR⊕AL ⊕AC ⊕As .

1 In vector analysis, it is well known that in any simply connected domain, a conservative vector
field is always a gradient field. The established relation between the edge voltages and the node
potentials is the equivalent of this statement on the level of graphs.
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With this decomposition, the voltages along resistive, inductive, capacitive edges
and, in particular, the voltage drops along current sources can be computed,

VR = AT
R Φ VL = AT

L Φ VC = AT
C Φ VS = AT

S Φ. (2.26)

Substituting the new expressions into the constitutive equations yields the corre-
sponding expressions for the currents along these edges,

IR(s) = R−1 AT
R Φ IL(s) =

1
s

L−1 AT
L Φ IC(s) = s CAT

C Φ.

In (2.24), all energy related quantities, i.e., the Ohmic loss rate and inductive and
capacitive energy, are expressed in terms of edge voltages. With the node potential
ansatz, (2.26), the Ohmic loss rate and the electrical energy can be reformulated
in terms of potentials,

P = ΦT AT
R R−1 ARΦ EL =

1
2s2
ΦT AT

L L−1 AL Φ EC = Φ
T AT

C CAC Φ.

This expression can be simplified considerably by introducing the circuit matrices

bG= AR R−1 AT
R

cL-1 = AL L−1 AT
L

bC= AC CAT
C , (2.27)

and rewriting

P = ΦT
bGΦ (2.28)

EL =
1

2s2
ΦT
cL-1Φ (2.29)

EC = Φ
T
bCΦ. (2.30)

Substituting the expression for the edge currents into Kirchhoff’s current law (2.18)
yields

0= AR IR+AL IL +AC IC +As Is ⇒
�

bG+
1
s
cL-1+s bC

�

·Φ= −As Is,

The (frequency-dependent) matrix Y(s) =
�

bG+ 1
s
cL-1+s bC

�

is called the admittance
matrix. It serves as the system matrix for the electrical circuit, i.e., it describes the
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output (in terms of edge voltages and currents) in terms of general input (in terms
of current sources).

Note that if the capacitor currents are again replaced by the charge on the capac-
itor, Kirchhoff’s current law can be written as a continuity equation for the electric
charge,

AR IR+AL IL +As Is = −
dQ
dt

. (2.31)

Last but not least, we derive an expression for the impedance matrix Z from
the system matrix. The impedance matrix relates the voltage drops along current
sources to the magnitude of the source current. The source network is described by
the source current vector, Is, and the node incidence matrix of the source network,
As. According to (2.25), the voltage drops along the sources are given by

V= AT
s Φ= −AT

s G−1(s)As Is = −s AT
s

�

cL-1+s bG+s2
bC
�−1

As Is . (2.32)

The impedance matrix Z is defined as the proportionality matrix between source
currents and source voltages, i.e.,

Z(s) =
Vs

Is
= −s AT

s

�

cL-1+s bG+s2
bC
�−1

As . (2.33)
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3 Macroscopic Electrodynamics

In this chapter, field theoretical models for electromagnetic components and systems
are described. Field theoretical models are the most general descriptions of electro-
magnetic components and systems. The equations of motion of electromagnetism, the
macroscopic Maxwell’s equations, are stated. Maxwell’s equations are compared with
the electrical circuit model from the previous chapter. It is shown that electrical circuits
cannot describe all electromagnetic phenomena incorporated in Maxwell’s equations.
We therefore show a quasistatic approximation, Darwin’s model, which exhibits the
same range of phenomena as electrical circuits. The link between electrical circuit
models and the field theoretical Darwin model is established using energy concepts.

3.1 Maxwell’s Equations in Vacuum

The basic physical quantity in electromagnetism is the electric charge. To our best
knowledge, electric charge consists of elementary particles with discrete charges.
For example, an electron carries an electric charge q = −1.602× 10−19 C. Due to
their small magnitude on macroscopic scales, a superposition of many charged el-
ementary particles can be treated with high accuracy as a continuous space charge
distribution ρ(x), [ρ]=1 C/m3.

An electric charge which is moving through space produces an electric current.
For example, an electron moving with speed ~v produces an electric current ~j =
q ~v . Again, a superposition of the currents produced by many moving elementary
charges can be interpreted as a continuous current density ~j(x),

�

~j
�

= 1 C/m2s.

Charged particles exert force upon each other. The force between charged par-
ticles is mediated by electromagnetic fields, the electric field ~E and the magnetic
field ~B. For a charged particle with charge q and trajectory x(t) in the presence of
an electric field ~E and a magnetic field ~B, the force is given by

~F(t) = q~E(x(t), t) + qẋ(t)× ~B(x(t), t). (3.1)

The main difficulty in the analysis of a system of moving charges and fields stems
from the fact that fields and charges cannot be treated separately. Moving charges
are sources for the electromagnetic fields and they are, at the same time, subject
to the force exerted by the electromagnetic fields. It follows that the equations of
motion for systems of fields and charges must be a coupled system of fields and
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charges. Combining and extending previous work, the equations of motion for the
electromagnetic fields were first formulated by the English physicist James Clerk
Maxwell and are accordingly called Maxwell’s equations. Using modern notation
in terms of partial differential equations, they can be written in the following form,
[34],

∇ · ~D = ρ (3.2)

∇ · ~B = 0 (3.3)

∇× ~E + ∂t ~B = 0 (3.4)

∇× ~H − ∂t ~D = ~j (3.5)

The quantities ρ and ~j are the charge and current densities respectively, the
fields ~E and ~B are the electric and the magnetic field respectively. There are two
additional fields, the displacement field ~D and the magnetizing field ~H. In vac-
uum, the displacement field and the magnetizing field differ from the electric and
magnetic fields due to a conventional scaling factor only. However, when analyz-
ing the interaction of electromagnetic fields with materials on a macroscopic level,
the displacement field and the magnetizing field can be complex (i.e., non-linear,
frequency-dependent, non-isotropic) functions of the electric and magnetic fields.
A simplified model, which nevertheless works well for a wide range of materials, is
shown in the next section.

3.2 Macroscopic Maxwell’s Equations

The system of Maxwell’s equations from the previous section provides a complete
description of a system of charges and currents and the forces acting between them
on all scales. However, for systems with very complex charge and current distribu-
tions, a full solution can be unfeasible or even impossible. Such complex systems
are given by, e.g., solid state materials interacting with the electromagnetic fields.
The huge amount of particles, the lack of knowledge of the exact charge and cur-
rent locations and, above all, the presence of quantum effects makes an microscopic
analysis in terms of classical electrodynamics impossible.

A much more elegant approach which, above all, leads back to the realm of
classical electrodynamics, is to treat macroscopic material distributions in an ap-
proximate, statistical manner. More precisely, materials in electromagnetic fields
give rise to additional source terms in Maxwell’s equations, which are a function of
the electromagnetic fields.
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For a dielectric material, the interaction of field and material is modeled in terms
of a polarization density ~P. Intuitively, the phenomenon of polarization can be
understood by treating the atomic nucleus and the valence electron as an electric
dipole which is aligned by an applied electric field [34]. More rigorously, it can also
be derived from quantum-mechanics. Inside the material, the polarization leads to
a decrease of the electric field strength,

~E =
1
ε0

�

~D− ~P
�

.

ε0 = 8.854× 10−12 As/Vm is a conventional scaling factor . As pointed out above,
the polarization density can in general be a very complex function of the applied
electric field. In this thesis, we restrict ourselves to linear, isotropic, frequency-
independent materials. These assumptions are clearly an approximation for real
materials and their validity has to be assessed for practical problems. In particular,
the assumption of frequency-independence is acceptable only as long as temporal
changes are slow or, equivalently, if there is no significant variation of the material
parameters in the frequency band of interest. In this case, the polarization can be
related to the electric field by the electric susceptibility κe, ~P = ε0κe ~E. The relation
between the electric field and the displacement field reads

~D = ε0 ~E + ~P = ε0(1+ κe)~E = ε~E. (3.6)

Under the above assumptions, the permittivity ε is a frequency-independent scalar
which is in general spatially inhomogeneous, depending on the different material
properties at different points in space.

For a magnetic material, the interaction of the field and the material is mod-
eled in terms of a magnetization density ~M . Intuitively, the phenomenon of
magnetization can be understood by treating the elementary spins of the atoms
as magnetic dipoles which are aligned in the presence of an applied magnetic
field. A more rigorous derivation again has to include quantum effects. Inside
the material, the magnetization can lead to a decrease (for dia-magnetism) or an
increase (for para-magnetism) of the magnetic field. The magnetization can in
general be a very complex, non-linear (for ferro-magnetism) function of the ap-
plied magnetic field. In this thesis, we again restrict ourselves to linear, isotropic,
frequency-independent materials. For this approximation, the same considerations
as for dielectric materials apply. Similar to the description of dielectric materials,
the magnetization can then be related to the magnetic field by the magnetic sus-
ceptibility κm, ~M = κm/µ0~B. The relation between the magnetic field and the
magnetization field reads
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~B = µ0( ~H + ~M) = µ0(1+ κm) ~H = µ ~H. (3.7)

The permeability µ is again a frequency-independent scalar which is in general spa-
tially inhomogeneous, depending on the different material properties at different
points in space.

Last but not least, in some materials there exist freely moving charged particles,
e.g., electrons in the conduction band of metals or ions in fluids. Such materi-
als form conductors. An applied electric field exerts a force on the freely moving
charges. The analysis of charge movement on a microscopic level again requires
the use of quantum-mechanics. On a macroscopic level, the movement of many
elementary charged particles gives rise to a current density. In general, this current
density can be written

~j = σ~E. (3.8)

σ defines the conductivity of the material. In general, the conductivity can be an
arbitrary non-isotropic, frequency-dependent, non-linear function of the applied
electric field. In this thesis, all conductivities are assumed isotropic, frequency-
independent and independent of the applied field strength. In this case, (3.8) can
be viewed as a generalization of Ohm’s law (2.4).

The assumption of frequency-independent permittivities, permeabilities, and
conductivities is an approximation which is not always satisfied for practical exam-
ples. The work presented in this thesis is concerned with the automated construc-
tion of an electrical circuit model for a 3D electromagnetic component from geome-
try and material data. As will be discussed in Sect. 6, classical electrical circuit with
frequency-independent circuit elements correspond to frequency-independent ma-
terial parameters. A generalization of electrical circuits with frequency-dependent
circuit elements leads beyond the realm of classical electrical circuit theory.

3.3 Maxwell’s Equations in Frequency Domain

In Sect. 2.2, the Fourier transform was introduced to simplify mathematical expres-
sions involving time derivatives. When Maxwell’s equations are transformed into
frequency domain, the partial derivatives with respect to time can be replaced by
algebraic multiplications with the complex frequency. Vectorial quantities, such as
the electrical field ~E and the magnetic field ~B, can be transformed into frequency
domain component-wise,
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F
�

~E
�

(x , s) =
1

2πi

∫ ∞

0

~E(x , t)e−stdt F
�

~B
�

(x , s) =
1

2πi

∫ ∞

0

~B(x , t)e−stdt.

with inverse transform

~E(x , t) =

∫ i∞

−i∞
FL

�

~E
�

(x , s)estds ~B(x , t) =

∫ i∞

−i∞
F
�

~B
�

(x , s)estds.

The time-domain representations, ~E(x , t) and ~B(x , t) and the frequency-domain
representations, F

�

~E
�

(x , s) and F
�

~E
�

(x , s), are equivalent expressions for the
same electric and magnetic field respectively. As there is no risk of confusion, we
will in the following denote the time and the frequency domain representation
by the same symbol, ~E(x , s) = F

�

~E
�

(x , s). The distinction between time and
frequency domain can be made from the different representations of differential
operators, (2.12). In frequency domain, Maxwell’s equations read

∇ · ~D(x , s) = ρ(x , s) (3.9)

∇ · ~B(x , s) = 0 (3.10)

∇× ~E(x , s) + s~B(x , s) = 0 (3.11)

∇× ~H(x , s)− s~D(x , s) = ~j(x , s). (3.12)

The constitutive equations read

~D(x , s) = ε(x)~E(x , s) (3.13)

~B(x , s) = µ(x) ~H(x , s) (3.14)

~j(x , s) = σ(x)~E(x , s) + ~js(x , s). (3.15)

As pointed out above, a frequency dependence of the material parameters is not
taken into account.

3.4 Quasistatic Approximations for Maxwell’s Equations

Maxwell’s equations are the most general model for the description of electromag-
netic systems. For this reason, electrical circuit models should be contained in some
sense in Maxwell’s equations.
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It is well known that classical electrical circuits cannot describe all electromag-
netic phenomena. In particular, electrical circuits do not in general describe wave
propagation, i.e., electromagnetic fields traveling through vacuum. Furthermore,
any change in a source induces a voltage in all circuit elements instantaneously, i.e.,
there is in general no retardation of electrical signals1. The key to understanding
the relationship between Maxwell’s equations and electrical circuits is that elec-
trical circuits provide an approximation to Maxwell’s equations which is valid in
the low-frequency domain. To quantify this relation, we discuss in this section low
frequency (quasistatic) approximations for Maxwell’s equations. A mathematically
rigorous discussion can be found in [36].

α= 0 α� 1 α= 1 α→∞

Electro-/Magnetostatics
O (1) Approximation

Electro-/Magnetoquasistatics
O (α) Approximation

Darwin Model
O (α2) Approximation

Maxwell’s Equations

Figure 3.1.: Quasistatic approximations to Maxwell’s equations

The first step towards the derivation of quasistatic models is the definition of a
dimensionless parameter α which defines the quasistatic region, Fig. 3.1. As α is
small in the quasistatic region, it is a suitable expansion parameter for the construc-
tion of quasistatic models. The order of the approximation in α further sub-divides
the quasistatic region. For the definition of the expansion parameter, all lengths
in the application under investigation are expressed in terms of dimensionless pa-
rameters t ′ and x ′, i.e., t = T t ′ and x = Lx ′, where T is a characteristic time
and L is a characteristic length for the application [36]. Maxwell’s equations with
dimensionless lengths read

1 There are extensions of classical circuit theory, e.g., [35], including these phenomena.
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∇′ · ~D = Lρ

∇′ · ~B = 0

∇′ × ~E +
L
T
∂t′ ~B = 0

∇′ × ~H −
L
T
∂t′ ~D = L~j.

Defining

α=
L

cT
(3.16)

with c = (ε0µ0)−1/2 the vacuum speed of light, the final system of equations reads

∇′ · ~D = Lρ

∇′ · ~B = 0

∇′ × ~E + cα∂t′ ~B = 0

∇′ × ~H − cα∂t′ ~D = L~j.

The same considerations can also be made in frequency domain, the characteristic
time T then corresponds to a characteristic frequency S = 2πiT−1. With the char-
acteristic wavelength λ = c/T , the quasistatic limit α� 1 corresponds to L � λ,
i.e., the wavelengths are much larger than the characteristic length of interest.

With a suitable expansion parameter at hand, the electromagnetic fields can be
expanded using a Taylor expansion,

~E = ~E(0) +α~E(1) +
α2

2
~E(2) + · · · ~B = ~B(0) +α~B(1) +

α2

2
~B(2) + · · · (3.17)

Rather than computing the full electromagnetic field and performing the Taylor
expansion coefficients afterward, we want to formulate equations of motion for
the expansion coefficients. It will turn out that the equations of motion couple
the longitudinal and the transverse parts of the expansion coefficient belonging to
different orders. While the magnetic field only has a transverse part, ∇ · ~B = 0, the
electric field has a longitudinal and a transverse component, ~E = ~EL + ~ET .
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3.4.1 Zeroth Order: Electrostatics and Magnetostatics

To compute the zeroth order, the dimensionless parameter α can be set to zero.
The equations of motion then read

∇ · ~DL = ρ ∇ · ~B = 0

∇× ~ET = 0 ∇× ~H = ~j

The same expression results when all fields and sources are assumed to be time-
independent in Maxwell’s equations. The limit α = 0 therefore corresponds to the
static limit of Maxwell’s equations. In the static limit, the electric and the magnetic
fields decouple. The source of the electric field is the electric charge density while
the source for the magnetic field is the current density. The transverse component
of the electric field vanishes, ~ET = 0.

3.4.2 First Order: Electroquasistatics and Magnetoquasistatics

The first order approximation introduces a unidirectional coupling between the
electric and the magnetic field. This results in two sets of equations of motion. The
equations of motion for electroquasistatics read

∇ · ~DL = ρ ∇ · ~B = 0

∇× ~ET = 0 ∇× ~H = ~j + ∂t ~DL .

The equations of motion for electroquasistatics implicitly contain the continuity
equation,

∇ · ~j + ∂tρ = 0. (3.18)

It is possible therefore to model time-dependent changes in the charge densities.
On the level of electrical circuits, such effects correspond to capacitive behavior.
On the other hand, Faraday’s law of induction is not incorporated in the system
of equations. Electroquasistatics therefore cannot be used to describe inductive
effects.

The second set of equations, the equations of motion for magnetoquasistatics,
read
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∇ · ~DL = ρ ∇ · ~B = 0

∇× ~ET = −∂t ~B ∇× ~H = ~j.

The equations of motion for magnetoquasistatics do not incorporate the continuity
equation. On the other hand, Faraday’s law of induction is included. The equations
of motion of magnetoquasistatics therefore describe inductive, but not capacitive
effects.

3.4.3 Second Order: Darwin’s Model

The second order approximation introduces a mutual coupling between the electric
and the magnetic fields and results in a single set of equations of motion,

∇ · ~DL = ρ ∇ · ~B = 0

∇× ~ET = −∂t ~B ∇× ~H = ~j + ∂t ~DL .
(3.19)

The second order approximation for Maxwell’s equations is called Darwin’s model.
Darwin’s model differs from Maxwell’s model in the definition of the displacement
current, using only the longitudinal part of the electric field, [37],

~jD,Maxwell = ∂t ~D = ∂t(~DL + ~DT ) ↔ ~jD,Darwin = ∂t ~DL . (3.20)

3.5 The Scalar and Vector Potentials

In many cases, the solution of Maxwell’s equations, (3.2)-(3.5), can be simplified
considerably if the electromagnetic fields are expressed in terms of auxiliary fields.
For suitably chosen auxiliary fields, the number of unknowns may be reduced with
respect to the original system, or the equations take a form which can be solved
more easily. There is a wide range of auxiliary fields which have been defined in
the literature. The most feasible choice depends on the application at hand. In this
work, we will use the description in terms of scalar potential φ and vector potential
~A. This choice of auxiliary fields is motivated by two observations:

• The equations of motion of the quasistatic Darwin model take a very conve-
nient form for subsequent analysis and numerical implementation.
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• In Sect. 6, the scalar potential φ will be identified as the field-theoretical
equivalent to the vector of node potentials of an associated electrical cir-
cuit model. This identification will allow a very intuitive scheme for the
construction of electrical circuit models from field data.

In order to reformulate Maxwell’s and Darwin’s equations in terms of scalar and
vector fields, we exploit that every transverse field can be written as gradient of a
scalar function,

~ET = −∇φE ~BT = −∇φB, (3.21)

and that every transverse field can be written as a curl of a vector field,

~ER =∇× ~AE ~BT =∇× ~AB. (3.22)

This decomposition of the electromagnetic fields greatly simplifies the solution of
Maxwell’s equations because some degrees of freedom can at once be eliminated:
Inserting (3.21) and (3.22) into the homogeneous Maxwell equations, (3.3) and
(3.4), yields:

∆φB = 0 ⇒ φB = 0

∇× ~ET + ∂t∇× ~AB = 0 ⇒ ~ET = −∂t ~AB.

The homogeneous Maxwell equations allow to discard two unneeded auxiliary
fields, the magnetic scalar potentialφB and the electric vector potential ~AE . The for-
mulae for the electromagnetic fields in terms of the electric scalar potential φ = φE
and the vector potential ~A= ~AB read

~E = −∇φ − ∂t ~A

~B =∇× ~A.
(3.23)

These formulae for the electromagnetic fields satisfy the homogeneous Maxwell’s
equations identically. For the scalar potential φ and the vector potential ~A to form a
Helmholtz decomposition of the electric field, the vector potential has to be trans-
verse,∇· ~A= 0. This is not generally the case. The definition of the electromagnetic
fields in terms of potentials, (3.23), is not unique. More precisely, for any scalar
function κ, the transformation

φ→ φ + ∂tκ ~A→ ~A−∇κ. (3.24)
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leaves the electromagnetic fields invariant. Such a transformation is called a gauge
transformation. In Sect. 4 we discuss how the gauge dependence of the potentials
in reflected in electrical circuit models. At this point, let us continue with reformu-
lating Maxwell’s equations using the potential formulation. Inserting (3.23) into
the inhomogenous Maxwell’s equations, (3.2) and (3.5) respectively, yields

∇ · (ε∇φ + ε∂t ~A) = −ρ ∇× (
1
µ
∇× ~A) + ∂t(ε∇φ + ε∂t ~A) = ~j (3.25)

In this work, we are interested far more in the quasistatic Darwin model. Inserting
the decomposition (3.23) into the equations of motion for the Darwin model, the
homogeneous Darwin equations are satisfied identically. The two inhomogeneous
Darwin equations read

∇ · (ε∇φ) = −ρ ∇× (
1
µ
∇× ~A) + ∂t(ε∇φ) = ~j (3.26)

The difference between the Maxwell and the Darwin model becomes most evident
when the gauge is fixed by the Lorenz gauge fixing condition,

∇ · (ε~A) + ε2µ∂tφ = 0. (3.27)

The equations of motion for the potentials for the Maxwell and the Darwin models
respectively read:

Darwin Model [Maxwell Model]
−∇ · (ε∇φ)

�

+ε2µ∂ 2
t φ
�

= ρ
∇×

�

1
µ∇× ~A

�

− 1
εµ∇ · (ε~A)

�

+ε∂ 2
t
~A
�

= ~j
(3.28)

From this representation, it can be seen that the equations of motion for Dar-
win’s model correspond to a linear approximation of the equations of motion for
Maxwell’s model, i.e., the second-order partial derivatives with respect to time are
neglected. In frequency domain, the second-order derivatives correspond to terms
which are quadratic in the frequency. Performing a study of scales for the equa-
tions of motion shows that the second-order derivatives with respect to time are
suppressed by α2 where α is the dimensionless parameter defined in (3.16).
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3.6 Green’s Functions

In Sect. 2.2, the Fourier transform served as example for a general procedure for
the solution of the equations of motion of a given physical system:

1. Specify a set of basis functions for the sources and express all sources in
terms of this basis.

2. Solve the equations of motion for each basis function separately.

3. The solution of the equations of motion for a general source corresponds to
a linear superposition of the elementary solutions. The coefficients can be
obtained from the expansion of the source in terms of basis functions.

In the example of the Fourier transform, the basis functions correspond to expo-
nentials, fs(t) = est . A differential equation in time domain corresponds to an
algebraic equation in frequency domain, which can be solved very easily for each
basis function separately.

In this section, a similar procedure is applied for the solution of partial differ-
ential equations. Consider a Dirac delta function in time and space, δ(x ′,t′)(x , t) =
δ3(x − x ′)δ(t − t ′). Any function in space-time can be expressed in terms of Dirac
delta functions by

f (x , t) =

∫ ∫

f (x ′, t ′)δ(x ′,t′)(x , t)d3 x ′dt ′. (3.29)

In this expansion, f (x ′, t ′) has to be interpreted as coefficient belonging to the
basis function δ(x ′,t′).

Consider next the equations of motion for the Maxwell and the Darwin model in
terms of scalar and vector potential. For spatially homogeneous material distribu-
tions, the equations of motion read

Darwin Model Maxwell Model

∆φ = −
ρ

ε

∆~A= −µ~j

∆φ −
1
c2
∂ 2

t φ = −
ρ

ε

∆~A−
1
c2
∂ 2

t
~A= −µ~j.

(3.30)

where ∆ = ∇2 is the Laplace operator, c = (εµ)−1/2 is the speed of light in the
homogeneous material. For the Darwin model, the fields and their sources are
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connected by the Laplace operator which is time independent. It follows that there
is an instantaneous relationship between the sources and the fields. The Laplace
operator has a simple analytical solution for the basis functions δ(x ′,t′), [34],

∆G(x ′,t′) = δ(x ′,t′) ⇔ G(x ′,t′)(x , t) =
1

4π|x − x ′|
. (3.31)

The function G(x ′,t′)(x , t) is the Green function of the Laplace operator. For the
Maxwell model, the fields and their sources are connected by a wave equation
which is time-dependent. The effect of the time-derivative becomes obvious when
the corresponding Green function is computed, [34]:

(∆−
1
c2
∂ 2

t )G(x ′,t′) = δ(x ′,t′) ⇔ G(x ′,t′)(x , t) =
δ((t − t ′)− |x − x ′|/c)

4π|x − x ′|
. (3.32)

The Green function for the wave equation differs from the Green function for the
Laplace operator by an additional delta function in the nominator. This delta func-
tion introduces retardation in the physical model, i.e., a source at position x and
time t does not influence the fields at position x ′ before a time t ′ = t + |x − x ′|/c.

Using the Green functions for the Laplace equation and the wave equation,
(3.31) and (3.32) respectively, together with an expansion of the charge and cur-
rent densities according to (3.29), the scalar and vector potentials can be expressed
in terms of sources by an integral equation,

Darwin Model Maxwell Model

φ(x , t) = −
1

4πε

∫

ρ(x ′, t)
|x − x ′|

d3 x

~A(x , t) = −
µ

4π

∫

~j(x ′, t)
|x − x ′|

d3 x

φ(x , t) = −
1

4πε

∫

ρ(x ′, t − |x−x ′|
c )

|x − x ′|
d3 x

~A(x , t) = −
µ

4π

∫

~j(x ′, t − |x−x ′|
c )

|x − x ′|
d3 x .

(3.33)
An explicit expression for the Green functions for the Darwin and Maxwell models
can in general be formulated only under the assumption of spatially homogeneous
media. If needed in the general case of spatially inhomogeneous media, the Green
function has to be computed numerically.
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3.7 Energy in the Electromagnetic Fields and the Definitions of Resistance,
Capacitance and Inductance

The total force exerted by the electromagnetic fields on charged particles, (3.1),
leads to an expression for the work done by the electromagnetic field, i.e., for
the rate of conversion from electromagnetic energy into other (e.g. mechanical or
thermal) forms of energy. In [34], the following expression is derived

P =

∫

~j(x) · ~E(x)d3 x . (3.34)

This expression is reformulated using Maxwell’s equations in order to derive an
expression for energy conservation in the electromagnetic fields,

P = −∂t

∫

uMaxwell(x)d
3 x where uMaxwell(x) =

1
2
~E · ~D+

1
2
~B · ~H. (3.35)

In (3.35), uMaxwell(x) is the energy density of the electromagnetic field, i.e., it can
be interpreted as energy stored in the electromagnetic fields.

In this thesis, we concentrate on deriving and analyzing an expression for the
electromagnetic field energy in the Darwin model. We will show that the energy
can be broken into several contributions which correspond to similar contributions
to the total energy in an electrical circuit. Using the expression (3.23) for the
electric field in terms of scalar and vector potential and the Darwin equations of
motion (3.26) for the potentials, the work (3.34) can be reformulated

P = −
d
dt

∫

1
2

�

[−φ(∇ · ε∇φ)] +
�

~A ·
�

∇×
�

1
µ
∇× ~A

��

− ~A ·
�

1
εµ
∇ · (ε~A)

���

︸ ︷︷ ︸

uDarwin(x)

d3 x

(3.36)
In the derivation, we assume time-independent materials and that all fields, charges
and currents vanish at infinity. uDarwin(x) can be interpreted as the energy stored in
the electromagnetic fields. While this expression is rather complicated in its general
form, it can be simplified considerably when spatially homogeneous materials are
assumed for simplicity. In this case, uDarwin(x) in (3.36) simplifies to

u(x) = −
ε

2
φ∆φ −

1
2µ
~A∆~A. (3.37)
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The negative-definiteness of the Laplace operator directly implies the positive-
definiteness of the electromagnetic energy. In the next sections, we are going
to discuss in detail the terms in (3.36) and establish the connection to electrical
circuit theory.

Before plunging into the detailed analysis, we compare uDarwin with the defini-
tion of electromagnetic energy density in the Maxwell model, uMaxwell . Transform-
ing both expressions, (3.36) and (3.35), into frequency domain and subtracting
yields the following result:

∆u= uMaxwell − uDarwin = −
s2

2c

∫

�

2εφ2 +
1
µ
|~A|2

�

d3 x = O
�

s2
�

. (3.38)

As expected, the difference in electromagnetic field energy is a quadratic function
of frequency which becomes negligible at low frequencies, i.e., in the frequency do-
main of validity of Darwin’s model. Furthermore the energy density in the Maxwell
model is always higher than the energy density in the Darwin model. The miss-
ing energy stems from the neglected s2 terms in the equations of motion, i.e., the
missing energy is the energy stored in propagating electromagnetic waves.

3.7.1 Resistance

We start our discussion with the term on the left-hand side of (3.36). For some
volume V with conductivity σ, the total dissipated power is given by

P =

∫

V

~j(x) · ~E(x)d3 x =

∫

V

1
σ(x)

�

�~j
�

�

2
d3 x .

The total power is thus proportional to the square of the total current I,

P =









∫

V

1
σ(x)

�

�

�

�

~j
I

�

�

�

�

2

d3 x
︸ ︷︷ ︸

R









I2. (3.39)

R is a geometry-dependent coefficient which is independent of the magnitude of
the current. Comparing (3.39) with (2.3) reveals a similar structure to the Ohmic
losses in a lumped resistor. We thus interpret R as the field-theoretical equivalent
to an Ohmic resistor.
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In the simple case of a straight conductor of length l, with constant cross section
A, conductivity σ, and homogeneous current density ~j, the resistance takes a very
simple expression

R=
d

Aσ
.

3.7.2 Capacitance

The first term on the right-hand side of (3.36) describes a change of electrical
energy stored in a distribution of electric charges,

EC = −
∫

V

1
2
φ · (∇ · ε∇φ)d3 x =

∫

V

1
2
~EC · ~DCd3 x (3.40)

Decomposing the total charge distribution into disjoint sets with total charges Qk,
i.e.,

ρ(x) =
n
∑

k=1

Qkρ̃k(x)

where
∫

V ρ̃kd3 x = 1, and writing the potential in terms of Green’s function for the
Coulomb equation2, we can write

EC =
n
∑

k,l=1

QkQ l

∫

Vk

∫

Vl

G(x , x ′)ρ̃k(x)ρ̃l(x
′)d3 xd3 x ′ = QTPQ. (3.41)

The matrix P is called the potential matrix, Pkl are called the coefficients of poten-
tial,

Pkl =

∫

Vk

∫

Vl

G(x , x ′)ρ̃k(x)ρ̃l(x
′)d3 xd3 x ′. (3.42)

Comparing (3.41) and (2.7), we are led to define the capacitance matrix

2 For spatially homogeneous materials, an explicit expression exists, (3.31). The formalism re-
mains valid for spatially inhomogeneous materials, even though no explicit expression for the
Green’s function can be provided.
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C= P−1. (3.43)

In practical cases, the normalized density functions ρ̃ are not known a priori. In-
stead, only the total charges on a set of disjoint conductors are prescribed. The
distribution functions ρ̃ are subject to a boundary condition at the positions of the
conductors, namely the requirement for the conductors to form equipotential vol-
umes. The concept of capacitance is also valid in this case, as it only depends on the
linear relationship between the charges ρ and the scalar potential φ. For complex
geometries, the values of capacitance can be computed numerically [38, 39, 40].
Last but not least, we emphasize that even though we used the scalar potential for
the derivation starting at (2.30), the coefficients of capacitance are well-defined
physical quantities. In particular, they are independent of the choice of gauge.

3.7.3 Inductance

The second term on the right-hand side of (3.36) describes a change of electrical
energy stored in a distribution of electric currents,

EB =

∫

V

~A · ~jd3 x =

∫

V

~H · ~Bd3 x . (3.44)

Decomposing the total current density into disjoint closed current paths ~γk,

~j =
n
∑

k=1

Ik~γk, (3.45)

where ∇ · ~γk = 0∀k, and writing the vector potential ~A for given ~j in terms of
Green’s functions,

EB =
n
∑

k,l=1

Ik Il

∫

V

∫

V

G(x , x ′)~γk · ~γld
3 xd3 x = ITLI. (3.46)

The matrix L is called the inductance matrix. The coefficients Lkk and Lkl are called
self and mutual inductances respectively,

Lkl =

∫

Vk

∫

Vl

G(x , x ′)~γk · ~γld
3 xd3 x ′. (3.47)

53

www.Techbooksyard.com



www.manaraa.com

Comparing (3.46) and (2.5), we are led to interpret L as the field-theoretical equiv-
alent for the lumped inductance matrix.

In practical cases, the normalized current density functions γ̃ are not known a
priori. Two different situations have to be distinguished: At very low frequencies,
the current distribution is determined by Ohmic properties of the conductors. The
current density function can be computed as solution to the scalar diffusion equa-
tion [41]. For high frequencies, the current distribution for given total current is
given such that the inductive energy is minimized, leading to skin and proximity
effects. For complex geometries, the values of inductance have to be computed
numerically, [1, 42]. Last but not least, we emphasize that even though we used
the vector potential for the derivation starting at (2.29), the coefficients of induc-
tance are well-defined physical quantities. In particular, they are independent of
the choice of gauge.

Closing Remarks

As the coefficients of capacitance and inductance can be derived from energy con-
cepts, it is obvious that they are well-defined physical quantities. In particular, they
are gauge independent. This is true also for the formulations in terms of scalar
and vector potentials. In Sect. 4.4.1 we are going to discuss a generalization of
the concepts of resistance, capacitance, and inductance by introducing partial re-
sistances, capacitances and inductances. These partial elements can be assigned to
small parts (filaments) of conductors. In general, partial circuit elements depend
on the choice of gauge.

The total energy density uDarwin in (3.36) treats the inductive energy and the
capacitive energy on equal footings. This implies that energy can be exchanged
dynamically between the two forms of energy. In particular, this enables resonant
behavior where energy resonates between the two forms. This is the equivalent to
LC resonances in lumped electrical circuits.
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4 Discrete Electrodynamics

Maxwell’s equations describe electromagnetic components and systems by a set of par-
tial differential equations. Unfortunately, for most practical applications, it is impossi-
ble to solve the set of equations analytically. In this chapter, we describe discretization
schemes which allow to solve the electromagnetic equations of motion on a computer.

The range of numerical techniques available today is very wide. In this thesis,
we only show two of them: The FEM has been shown to be a very general, robust and
powerful method and is mainly used in this work. The PEEC method is the state-of-the-
art method for the construction of electrical circuit models and is mainly introduced
for purposes of comparison with our method.

4.1 Discretization Techniques

Maxwell’s equations are a set of partial differential equations for the description
of electromagnetic systems. In general, a set of partial differential equations is de-
scribed by a differential operator D acting on the unknown function f , and a given
source function u. f need not be a scalar function, it can also be a vector-valued
function or describe a set of coupled functions, e.g., the scalar and vector potential
of Darwin’s model, (3.26). The source function u describes the excitation of the
system. The partial differential equation is augmented by boundary conditions on
the boundary ∂Ω of the domain of definition Ω. Mathematically,

D f = u

f |∂Ω = fb.
(4.1)

Eqn. (4.1) describes a continuous system with, in general, an infinite number of
degrees of freedom. This infinite number of degrees of freedom is reflected by an
infinite dimensional vector space H (Ω) of functions defined on Ω. The solution f
is the unique function in H (Ω) satisfying (4.1). For an numerical implementation
on a real computer with finite memory capacity, the number of degrees of freedom
has to be restricted to a finite number, i.e., the space H (Ω) has to be discretized.
The discrete vector space H D(Ω) then serves as a set of basis functions and the
numerical solution f D is a superposition of basis functions, f D ∈ H D(Ω). The ac-
curacy of the discretization depends most strongly on the choice of basis functions.
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For best accuracy, the basis functions should be chosen such that both the expected
solution and the boundary conditions can be described as accurately as possible.

With only a finite set of basis functions, it is impossible in general to satisfy the
continuous equations (4.1) exactly, i.e., f D cannot be chosen to make the residual

r = D f D − u (4.2)

vanish everywhere. Instead of trying to solve the continuous set of equations with
a discrete set of basis functions, we have to devise a testing scheme, i.e., approx-
imating the solution of the differential equation by a discrete set of equations. In
the following, we show two popular testing schemes:

• The point collocation method, [43], requires the exact solution of (4.1) at a
discrete set of points only. While the implementation is straightforward, the
accuracy of the method can be very low.

• The method of weighted residuals defines a discrete set of weight functions
gD ∈ GD(Ω) and solves (4.1) by zeroing the weighted residuals,

〈gD,D f D〉=
∫

Ω

(gD)†D f Dd3 x = 0, ∀gD ∈ GD(Ω). (4.3)

The best accuracy is reached in general by Galerkin’s choice, [43], GD(Ω) =
H D(Ω), i.e., the weighting functions are chosen equal to the basis functions.

Using the discretization procedure above, the equations of motion can be written
as a matrix system of equations. Assume that the basis functions are chosen such
that the boundary conditions can be satisfied exactly. Let { fi , i = 1, · · · , N} be a
basis forH D(Ω) = GD(Ω), let f D =

∑N
i=1 ai fi . The discretized equations of motion

then read

〈 fi ,D
N
∑

j=1

a j f j〉=
n
∑

j=1

〈 fi ,D f j〉a j = 〈 fi , u〉= ui . (4.4)

In matrix form,

Mf= u, Mi j = 〈 fi ,D f j〉=
∫

Ω

f †
i D f jd

3 x . (4.5)

To sum up, we reiterate the three basic steps for the discretization of partial
differential equations:
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1. Define a set of basis functions fi . The discrete solution f D is a linear combi-
nation of basis functions, f D =

∑N
i=1 ai fi .

2. Define a testing scheme. When using the method of weighted residuals,
define a set of testing functions gi .

3. Reformulate the system of partial differential equations as a matrix system
of equations, (4.4), and solve the matrix system of equations.

4.2 The Finite Element Method

The Finite Element Method, [44], is one of the most general discretization tech-
niques and can be applied in general to all differential equations. In this section,
we repeat the most important definitions and properties of the FEM for scalar par-
tial differential equations. The structure of this section follows the steps in Sect.
4.1.

Let D be a scalar partial differential operator, for simplicity, D = ∆. Further-
more, let Ω be the computational domain, ∂Ω = Γ the boundary with, for simplic-
ity, Dirichlet boundary conditions. Let f be the unknown scalar field, u the scalar
source field. The equations of motion read

∆ f = u

f |Γ = fΓ .
(4.6)

4.2.1 Basis Functions for the Finite Element Method

The basis functions for the standard FEM are piecewise polynomials. The supports
of the basis functions are given by simple geometric entities, e.g., linear and curved
polyhedra. Each such polyhedron is called an element and lends the method its
name. The decomposition of the computational domain into elements allows to
describe spatially inhomogeneous material properties very easily.

Different formulations of the FEM are classified according to the maximum poly-
nomial degree of the basis functions, and the maximum polynomial degree of the
Lagrangian interpolation polynomial describing the elements.
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• In sub-parametric elements, the order of the interpolation polynomials is
smaller than the order of the basis functions. Such an implementation is
useful when the geometry is rectangular in character and can be described
using, e.g., linear interpolation functions only. On the other hand, many
degrees of freedom are available for describing the fields. In this work, sub-
parametric elements were used.

• In iso-parametric elements, the order of the interpolation polynomials is
equal to the order of the basis functions. Higher order interpolation func-
tions very accurately describe curvilinear geometries using a small number
of elements only.

• In super-parametric elements, the order of the interpolation polynomials is
higher than the order of the basis functions. Super-parametric elements have
little importance in literature.

A major advantage of the FEM is the fact that the different formulations can
be combined to very efficiently. First, even without changing the order of the in-
terpolation polynomials, the size of the elements can be adapted to the problem
(h-refinement, [45]). The mesh can also be refined locally during the computa-
tion, [46]. Second, the order of the implementation functions can be adapted
locally, e.g., in order to describe a curved surface. Third, the order of the basis
functions can be chosen differently for each element (p-refinement, [47]). Last but
not least, the aforementioned techniques can be combined (hp-refinement, [48]).

We start with linear polynomials on linear tetrahedra. In a local coordinate sys-
tem ξ,ζ,η for a tetrahedron, the corners correspond to the points (0,0, 0), (1, 0,0),
(0,1, 0), and (0, 0,1). A basis for the space of piecewise polynomials of degree ≤ 1
is given by

φ0 = 1− ξ− ζ−η φ1 = ξ φ2 = ζ φ3 = η. (4.7)

The basis functions are chosen such that each basis function is one at exactly one
corner of the tetrahedron and zero at all other corners. A formulation of the basis
functions in terms of global coordinates can be obtained by expressing the local
coordinates ξ,ζ,η in terms of global coordinates. The explicit form of the basis
functions will never be needed, it can be found, e.g., in [44].

The set of all basis functions fi is given by the φi for all elements. In the confor-
mal FEM, continuity of the solution is enforced by combining two basis functions
which belong to the same node, but are defined on different elements. The sup-
port of the basis functions of the conformal FEM extend over multiple elements.
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If continuity is not enforced strictly, the resulting version of the FEM is called a
Discontinuous Galerkin (DG) method, [49, 50].

Higher order nodal basis functions can be constructed accordingly by restricting
the support of higher order polynomials to the elements. For example, quadratic
basis functions can be written in local coordinates as

φ5 = ξ
2 φ6 = ξη φ7 = ξζ φ8 = η

2 φ9 = ηζ φ10= ζ2. (4.8)

4.2.2 Testing Scheme

In the conformal FEM, the basis functions are reused as basis for the weighted
residuals. This corresponds to the Galerkin ansatz. For linear tetrahedral elements,
all resulting integrals can be computed using the formula, [44],

∫

V∆

φk
0(x)φ

l
1(x)φ

m
1 (x)φ

n
1 (x)d

3 x = 6V∆
k!l!m!n!

(k+ l +m+ n+ 3)!
. (4.9)

As an example, consider the integral appearing in the discretization of the Laplace
operator. This integral can be solved by transformation of variables to a local coor-
dinate systems and using (4.9),

〈φi ,∆φ j〉=
∫

V∆

φi(x)∆φ j(x)d
3 x = −

∫

V∆

(∇φi(x))
T(∇φ j(x))d

3 x

= −
∫ 1

0

∫ 1

0

∫ 1

0

(JT∇φi(ξ,ζ,η))−1(JT∇φ j(ξ,ζ,η))
dξdζdη
|det(J)|

= −Tr

�

JJT

|det(J)|

�

∫ 1

0

∫ 1

0

∫ 1

0

(∇φi(ξ,ζ,η))(∇φi(ξ,ζ,η))dξdζdη

��

.

The last integral has to be solved only once for a standard tetrahedron,and an an-
alytical solution exists. The solution for an arbitrary tetrahedron can be computed
using the Jacobian of the variable transformation,

J=
∂ (ξ,ζ,η)
∂ (x , y, z)

=





∂xξ ∂yξ ∂zξ
∂xη ∂yη ∂zη
∂xζ ∂yζ ∂zζ



 .
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4.2.3 Setting up the Matrix System of equations

With the set of basis functions and testing functions, the equations of motion can
be discretized. With an expansion of the unknown function, f D =

∑N
i=1 aiφi , the

discretized equations of motion for, e.g., the scalar Laplace equation read

〈φi ,∆
N
∑

j=1

a jφ j〉=
N
∑

j=1

〈φi ,∆φ j〉i j = 〈φi , u〉, ∀i = 1, · · · , N .

In order to define the coefficient matrix M, Mi j = 〈φi ,∆φ j〉 the basis functions
have to be associated with global degrees of freedom. In order to ensure continuity
of the solution, basis functions belonging to the same node are associated with the
same degree of freedom. The solution of the local integrals is shown in 4.2.2.

4.3 The Finite Element Method for Electromagnetism

In the previous section, we introduced the FEM along the lines of the scalar Laplace
equation. Before applying the FEM to discretize the equations of motion of electro-
magnetism, a mathematical formulation has to be chosen. In order to use the same
formulation for Maxwell’s and Darwin’s model, the formulation in terms of scalar
and vector potential is used, (3.28). While the scalar potential can be discretized
using nodal elements, discretizing the vector potential is not so easy.

The main difference between the scalar Laplace equation and the equations of
motion for the vector potential is the inherent vectorial character of the latter.
Treating each component of the vector field separately, i.e., separately discretizing
each component using nodal elements has been proven unfeasible due to the emer-
gence of spurious, i.e., unphysical solutions [51, 52, 53, 54]. The emergence of spu-
rious solutions has been traced back to a numerical violation of the ∇· (∇× ~v ) = 0
relationship, [55]. Another disadvantage of nodal based elements is a bad repro-
duction of continuity requirements of the fields at material interfaces, [56]. To
sum up, nodal basis functions adapt very badly to the requirements of intrinsically
vectorial problems.

The vector potential is governed by a double curl equation, it thus belongs to the
function space

H (curl,Ω) =
�

~v :∇× ~v ∈ L 2(Ω)
	

=

�

~v :

∫

Ω

|∇× ~v |2d3 x <∞
�

.
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A discretization of the function space H (curl,Ω) which provides a significantly
better approximation of the physical solution is provided by edge basis functions,
[57, 58]. It has been noted that the new basis functions do not produce spurious
solutions, [59, 60]. They also offer a better modeling of vector field continuity at
material interfaces, [61].

Like nodal basis functions, edge basis functions are in general vector valued
polynomials. The lowest order basis functions are linear polynomials and are given
by

~vi j = φi∇φ j −φ j∇φi . (4.10)

The scalar functions φ are exactly the nodal basis functions. The name of the edge
elements indicates that each basis function is associated with two nodes i and j, or,
equivalently, to the edge connecting the nodes.

Extending vector basis functions to higher orders is also possible. The set of
basis functions then also comprises higher order vector-valued polynomials. Unlike
for nodal elements, this extension is not straightforward in order to retain a good
approximation of H (curl,Ω). Several extensions are compared in [62]. In this
work, a formulation of quadratic edge basis functions from [63] is used.

The edge basis functions (4.10) have originally been derived in order to dis-
cretize the electric vector field ~E. As the vector potential ~A belongs to the same
function spaceH (curl,Ω) and satisfies identical continuity requirements at mate-
rial interfaces, they can also be used for the discretization of the vector potential ~A
for Maxwell’s or Darwin’s model respectively, [64]. In order to discretize the scalar
potential φ, the standard nodal basis functions are used.

4.3.1 Software used in this work

Based on the theory presented above, a program for the solution of the equations
of motion of Darwin’s system using the FEM was implemented by the author. The
implementation is based on commercial and open-source software:

• For geometry preprocessing and generation of a linear tetrahedral mesh, the
commercial software CST Microwave Studio ® (CST MWS), [65], and the
open-source program GMSH, [66], were used.

• In order to set up the matrix system of equations, the Portable Extensible
Toolkit for Scientific Computation (PETSc), [67, 68, 69], was used. PETSc is

61

www.Techbooksyard.com



www.manaraa.com

linked to the Intel Math Kernel Library (MKL), [70], and the Message Pass-
ing Interface (MPI) library from the Microsoft High-Performance Computing
(HPC) Pack, [71].

• The matrix system of equation was solved using the parallel direct solver
SuperLU_Dist, [72, 73].

4.4 The Partial Element Equivalent Circuit method

The PEEC method, [3], is a numerical method for the solution of electromagnetic
problems. The standard PEEC method uses an integral formulation of Darwin’s
model, however it can also be formulated for the full-wave model described by
Maxwell’s equations [35]. As the name indicates, the PEEC method discretizes
the geometry into elementary geometric entities, usually cubes and assigns to each
elementary entity values for inductance, resistance, and capacitance. Current and
voltage sources can be included on both the 3D level and the circuit level. The
discretization procedure results in a very large equivalent electrical circuit which
can be solved with standard circuit solvers such as LT SPICE [74] or SABER [75].

For simplicity, in all following sections, we assume that the geometry consists
of one or multiple conductors of finite conductivity σ which are placed in infinite
vacuum space, i.e. εr(x) = µr(x) = 1 everywhere. In this case, Green’s function
for the Laplace equation, G(x , x ′), has an explicit form (3.31),

G(x , x ′) =
1

4π
1

|x − x ′|
. (4.11)

4.4.1 Partial Circuit Elements

Partial Resistances

Consider a conductor of cross section area A, length l, and spatially homogeneous
conductivity σ. When a homogeneous current density ~j = I

A~el flows through the
cube, the rate of energy dissipation is given by (3.39). The corresponding resistance
can be computed explicitly to yield

R=
l
σA

. (4.12)
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For practical geometries, e.g., bent wires, there usually does not exist a simple for-
mula for the total resistance such as (4.12). However, even a complex geometry
can be imagined to consist of many elementary cubes such that the above assump-
tions are satisfied for each elementary cube. Each elementary cube is then assigned
a resistance according to (4.12). The total resistance can be computed from the
resistances of the elementary cubes using the laws of circuit theory. The resistances
of the elementary cubes can be seen as part of the total resistance, they are called
partial resistances accordingly.

Partial Capacitance

Consider next two homogeneously charged rectangular surfaces S1 and S2, carrying
total charges Q1 and Q2 respectively1. In Sect. 3.7.2 we derived an expression for
the total capacitive energy of the system, (3.41), and an integral equation for the
coefficient of potential (3.42). For the two plates, the coefficient of potential reads

Pkl = (C
−1)kl =

1
ε0S1S2

∫

S1

∫

S2

1
4π

1
|x − x ′|

dada′. (4.13)

A closed form solution of (4.13) is computed in [38]. For practical geometries,
there exists no simple formula for the total coefficient of potential such as (4.13).
However; as above, we can imagine a complex surface as consisting of elementary
rectangles. The total coefficient of potential can be computed from the coefficients
of the elementary plates using the laws of circuit theory. As the coefficients of
potential of the elementary surfaces can be seen as part of the total coefficients of
potentials, they are called partial coefficients of potential accordingly.

Partial Inductance

In the two previous sections, we introduced the concepts of partial resistance and
partial capacitance by decomposing the total resistance and the total capacitance
into parts, which we assigned to simple geometric entities. In this section, we aim
at a similar procedure for the inductors, i.e., to decompose the total inductance of
a solenoidal current density into parts, to which we assign partial inductances.

1 At practical time-scales or frequencies, the electric charge can be approximated as a pure sur-
face charge density. The charge density inside conductors or dielectrics is zero with very good
approximation [41].
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There is a significant difference to the previous cases, however. When a solenoidal
current density is broken into several parts, the parts are not necessarily solenoidal
themselves. The magnetic field, and thus the definition (3.44), is not well-defined
for non-solenoidal current densities. We therefore cannot use (3.44) to define par-
tial inductances.

On the other hand, (3.46) can be generalized to arbitrary current densities. We can
thus define partial inductances for, e.g., a system of two cubes V1 and V2 carrying
homogeneous current densities in directions ~e1 and ~e2 respectively,

Lkl =
µ0

A1A2

∫

V1

∫

V2

~e1 · ~e2

4π|x − x ′|
d3 xd3 x ′. (4.14)

A1 and A2 are the cross section areas of the cubes normal to ~e1 and ~e2 respectively. A
closed form solution of (4.14) is provided in [1]. For k 6= l, Lkl is called the partial
mutual inductance between the k-th and the l-th inductor, for k = l, Lk = Lkk is the
partial self-inductance of the k-th inductor. For practical multiconductor geome-
tries, the inductance matrix (3.46) cannot be computed analytically. However, we
can again imagine a complex geometry as consisting of many small cubes, for which
the partial self and mutual inductances can be computed. The total inductance can
be computed by combining the partial self and mutual inductances according to
the laws of circuit theory.

The definition of partial inductances is closely connected to the gauge-dependent
vector potential ~A. This fact leads to some properties of partial inductances which
have to be considered with care:

• The relationship between the vector potential ~A and the current density ~j
is subject to the gauge condition (3.24). The values of the partial induc-
tances depend on the gauge [76] and (4.14) is only one possible definition.
The original definition is derived using the Lorenz gauge (3.27). A gauge
transformation ~A→ ~A−∇κ changes

L =
1
I2

∫

~A · ~jd3 x →
1
I2

∫

�

~A−∇κ
�

~jd3 x = L +

∫

κ(∇ · ~j)d3 x . (4.15)

If the current density is solenoidal, ∇ · ~j = 0, the definition of inductance
is gauge-independent. It follows, in particular, that when several gauge-
dependent partial inductances are combined to compute a loop inductance,
this loop inductance is gauge independent as it should be.
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• It is shown in Sect. 6.2.4 that in the definition of partial inductances, the
open current paths are closed implicitly by a generic current return path,

~jreturn = ε∇g where ∇ · ε∇g = −∇ · ~j.

With this return current, ∇ · (~j + ~jreturn) = 0 and the partial inductance is
really the self inductance of a solenoidal current density.

• A geometrically motivated interpretation of partial inductance is shown in
[1]. The partial inductance is related to self and mutual inductances of
closed current loops which extend to infinity. An experimental setup ap-
proximating current loops extending to infinity is used in [77], where the
authors claim to have measured partial inductances. However, their method
really measures the mutual inductances of two perpendicular current loops
which agrees in this simple case with the definition (4.14) for partial induc-
tance. In general, partial inductances are gauge-dependent quantities and
cannot be measured.

To sum up, we emphasize that unlike the concepts of partial resistance and partial
capacitance, the concept of partial inductance is a mathematical rather than a phys-
ical concept. Whenever partial inductances are used, the physical current return
path has to be included in the circuit representation and has also to be modeled by
means of partial inductances.

4.4.2 The Partial Element Equivalent Circuit Method for the Solution of
Electromagnetic Field Problems

In Sect. 4.4.1, we derived the concepts of partial resistance, partial capacitance
and partial inductance based on the assumption that the charge and current den-
sities ρ and ~j are known. This is in general not the case. Instead, charges and
currents interact with the electromagnetic fields and their distribution can only be
solved using a self-consistent system of equations describing at the same time the
charges, currents, electromagnetic fields, and their mutual interactions. Such a sys-
tem is given, e.g., by Maxwell’s equations or Darwin’s equations. The PEEC method
discretizes such a self-consistent system of equations and expresses the discretized
system in terms of partial circuit elements.

In Sect. 4.1, we developed the three steps needed for the discrete description
of a physical system - defining the equations of motion, specifying a discrete set
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of basis functions, specifying a discrete set of testing functions, and setting up the
matrix system of equations. We are going to introduce the PEEC method along
these steps.

Equations of Motion

The standard PEEC method [3] is formulated for the quasistatic Darwin’s model
(Sect. 3.4.3) because it allows for a simple implementation and interpretation
as an equivalent electrical circuit. There exist also variants of the PEEC method
(Retarded Partial Element Equivalent Circuit (rPEEC), [35]) which use Maxwell’s
equations as equations of motion.

The PEEC method is an integro-differential equation method, i.e., it starts from
an integro-differential formulation of the equations of motion. The charge and
current densities from a linearly independent set of unknowns from which all other
quantities are computed. The interactions between charges and currents, mediated
by the electromagnetic fields, are described in terms of Green’s functions (Sect.
3.6).

The integro-differential formulation of Darwin’s equations used in the PEEC
method is given by [3]

~j(x) = σ(x)~E(x) = σ
�

−∂t ~A−∇φ
�

(4.16)

∂tρ =∇ · ~j (4.17)

φ(x) =
1
ε0

∫

V

ρ(x ′)G(x , x ′)d3 x ′ (4.18)

~A(x) = µ0

∫

V

~j(x ′)G(x , x ′)d3 x ′. (4.19)

Eq. (4.16) is the constitutive equation for conductors. Eq. (4.17) is the continuity
equation for the electric charge. Eqs. (4.18) and (4.19) are integral expressions for
the equations of motions of the scalar and vector potentials, (3.28).

Discretization

The system of equations (4.16)-(4.19) is discretized by specifying a set of basis
functions for the unknown functions ρ(x) and ~j(x). The standard PEEC method
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[3] uses two sets of basis functions: In order to approximate the current density,
all conductors are decomposed into cubes and a constant current density flowing
along each cube is assumed. Each cube (more precisely, each current basis function
associated to a cube) is called a current cell. For the k-th current cell with current
flow direction ~ek, cross section Ak, and volume Vk, the current basis function is
defined by

~mk(x) =
1
Ak
~ekχVk

, (4.20)

and χVk
is the characteristic function of the k-th cube. By construction, each current

cell supports current in one direction only. In order to reproduce the real current
flow with high accuracy, current cells that support current flowing in mutually
orthogonal directions are allowed to overlap. This implies, again, that current cells
should be interpreted in terms of basis functions rather than geometric entities.

In order to discretize the charge density, the conductor surfaces are decomposed
into rectangles and a constant surface charge density in the rectangles is assumed.
Each rectangle (more precisely, each charge basis function associated to a rectan-
gle) is called a charge cell. For the l-th charge cell with surface S, the charge basis
function is given by

vl =
1
Sl
χSl

. (4.21)

Charge and current cells are usually not chosen independently. A simple imple-
mentation results when the charge cells are chosen at the two ends of the current
cells that are distinguished by the current flow direction2. Overlapping current
cells lead to overlapping charge cells. These charge cells are united into one single
charge cell, consisting of two or three rectangles. The structure of PEEC current
and charge cells is illustrated at a simple example in Fig. 4.1.

In principle, it is possible to eliminate the potentials φ and ~A from the PEEC
system of equations by inserting (4.18)-(4.19) into (4.16)-(4.17). For easier inter-
pretation of the resulting discrete system as an electrical circuit model, we omit
this step. The charge basis functions are then reused to discretize the scalar-valued
potential φ, the charge basis functions are reused to discretize the vector-valued
potential ~A.

2 The four other surfaces cannot carry charge by definition because by construction, the current
basis functions prescribes zero divergence at these surfaces.
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V1,~e1 V2,~e2

V3,~e3

A1

Figure 4.1.: Three PEEC current cells (thin, black) and one PEEC charge cell (thick,
red)

Testing

With only a discrete set of basis functions, it is impossible in general to solve the
system of equations (4.16)-(4.19) exactly. The problem is circumvented by a suit-
able testing scheme. For the PEEC method, two testing schemes are commonly
used

• The collocation method, [78], forces (4.16)-(4.19) to hold only at selected
points. Usually, the centers of the current and charge cells are chosen. The
main advantage of the collocation method is its simplicity, the main disad-
vantage a comparatively low accuracy and stability issues [79, 80].

• The Galerkin method uses test basis functions which are equal to the basis
functions and minimizes (4.16)-(4.19) with respect to the standard inner
product. The evaluation of the inner product requires further integrals and
thus leads to more complicated expression. However, this method leads to a
much better accuracy. This is the method used in the standard formulation
of the PEEC method [3].

Setting up the Matrix System of Equations

The equations of motion are discretized by inserting the basis functions (4.20) and
(4.21) into (4.16)-(4.19). Starting with (4.18), we obtain:
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Φi = 〈vi ,
Nn
∑

j=1

Φ j v j〉= 〈vi ,

∫

∑Nn
j=1 Q j v j

4πε0|x − x ′|
d3 x ′〉

=
Nn
∑

j=1

Q j





1
ε0SiS j

∫

Si

∫

S j

dada′

4π|x − x ′|



 .

(4.22)

Comparing the last term in (4.22) and (4.13), we recover the partial coefficients of
potential for the i-th and j-th charge cells. In matrix form, (4.22) can be written

Φ= PQ ⇔ Q= CΦ (4.23)

In order to discretize (4.16), we express the vector potential ~A in terms of the
current using (4.19) and obtain

Ii

�

∫

V1

d3 x
A2

iσ

�

= 〈 ~mi ,
Nb
∑

j=1

I j

σ j
~m j〉

= 〈 ~mi ,

∫

µ0

∑Nb
j=1

dI j
dt ~m j

4π|x − x ′|
d3 x ′〉+ 〈 ~mi ,

Nn
∑

j=1

Φ j∇v j〉

=
Nb
∑

j=1

dI j

dt





µ0

AiA j

∫

Vi

∫

Vj

~e1 · ~e2

4π|x − x ′|
d3 xd3 x ′



+ [Φi+ −Φi−] ,

(4.24)

where Φi+ and Φi− are the coefficients belonging to the charge cells the end faces
of the i-th current cell. Comparing the bracketed term on the left hand side and
(4.12), we recover the partial resistance. Comparing the bracketed integral on the
right hand side and (4.14), we recover the partial inductance for the i-th and j-th
cubes. In matrix form, (4.24) thus takes the form

AT Φ= R · I + L ·
dI
dt

, (4.25)

where R is the diagonal matrix of partial resistances, L is the matrix of self and
mutual inductances. A describes the incidences of the charge cells into current
cells. Mathematically,
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Ai j =

∫

V

~m j · ∇vid
3 x =

∫

V

vi · (−∇ · ~m j)d
3 x

=







+1 if j-th current cell ends at i-th charge cell

−1 if j-th current cell starts at i-th charge cell

0 otherwise.

(4.26)

Interpreting the current cells as edges of a graph and the charge cells as nodes, it
is identical to the node incidence matrix (2.13). Last but not least, it remains to
discretize the continuity equation (4.17),

dQ i

dt
= 〈vi ,

Nn
∑

j=1

dQ j

dt
v j〉= 〈vi ,

Nb
∑

j=1

I j(∇ · ~m j)〉

=
Nb
∑

j=1

dQ j

dt





∫

Vi

∫

Vj

vi(∇ · ~m j)d
3 xd3 x ′



 .

(4.27)

In matrix form, this equation reads

dQ
dt
= −AI . (4.28)

Interpreting the System of Equations as an Equivalent Electrical Circuit

As the name indicates, the PEEC method describes an complex electromagnetic
system in terms of a large equivalent electrical circuit. With the following identifi-
cations, the discetized field equations have the same form as circuit equations:

• The charge cells form the nodes of the equivalent circuit.

• The current cells form the edges of the equivalent circuit.

• The A matrix in (4.26) agrees with the node incidence matrix (2.13) of the
equivalent electrical circuit.

• Eq. (4.25) assigns to the i-th current cell a series connection of an inductor
Lii and a resistor Rii . Between the i-th and the j-th current cell exists a
mutual inductance Li j .
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• Eq. (4.23) assigns to each pair of charge cells an inductance. Eq. (4.28)
allows to express the charges on the capacitors in terms of capacitor currents
as in (2.8).

The size of the electrical circuit directly depends on the mesh size: The number of
nodes is equal to the number of charge cells, the number of edges is equal to the
number of current cells. For practical geometries, the number of circuit elements
can thus be very large.

4.4.3 PEEC Formulations for Different Physical Models

The standard PEEC method [3] uses the Darwin system of equations (4.16)-(4.19)
as equations of motion. The discretization technique is more general and can also
be applied to different sets of equations of motion. Our investigation reveals inter-
esting relationships between different quasistatic models for Maxwell’s equations
(Sect. 3.4) and electrical circuits.

• If the set of PEEC basis functions is used to discretize the equations of mo-
tion of electroquasistatics, the resulting circuit consists of a resistance matrix
and a capacitance matrix only, [81]. Electroquasistatics cannot describe in-
ductive effects. An implementation of the PEEC method for electrostatics is
provided by the open-source tool FastCap [39].

• If the set of PEEC basis functions is used discretize the equations of motion of
magnetoquasistatic, the resulting circuit consist of a resistance matrix and an
inductance matrix only, [81]. Magnetoquasistatics cannot describe capaci-
tive effects. An implementation of the PEEC method for magnetoquasistatics
is provided by the open-source tool FastHenry [42].

• If the set of PEEC basis functions is used to discretize the full Maxwell’s
equations, the Green’s functions, i.e., the kernels of the integrals, have to be
replaced by their full-wave counterparts, [35]. In this case, the discretized
equations of motion are still in the form of circuit equations. However, the
circuit elements become retarded or, in the frequency domain, frequency
dependent.

This overview confirms the analysis in Sect. 3.4. The equations of motion of elec-
tro(quasi)statics and magneto(quasi)statics describe some effects which are also
described by electrical circuits, but not all of them. Maxwell’s equations require
circuit elements which differ from their classical definitions and describing all ef-
fects of electromagnetism leads beyond the realm of electrical circuits. The exact
counterpart of circuit theory in the 3D domain is Darwin’s model.
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4.4.4 Inclusion of Dielectric and Magnetic Materials in the PEEC method

Spatially inhomogeneous dielectric and magnetic materials cannot easily be incor-
porated in the PEEC formalism. This is because there exists no trivial generalization
of the Green’s function (3.31) to the case of spatially inhomogeneous materials. In
practice, two approaches are possible

• The direct approach is to compute the generalized Green’s function which
is valid also in the presence of inhomogeneous materials. For some simple
geometries, such an approach has been proven feasible [82, 83]. In [84],
the Green’s functions in the presence of materials are computed numerically.
From the point of view of circuit interpretation, the main advantage of this
approach is that all when all material information is incorporated in the
Green’s functions, it only alters the circuit element values without changing
the topology of the circuit. However; the absence of analytical expressions
for general material distributions and the huge work needed for a numerical
construction of the Green’s function disqualify this approach for practical
applications.

• The widely used approach for the description of inhomogeneous materials is
to treat the electric and magnetic polarizations as additional unknowns, i.e.,
to include them explicitly instead of removing them by means of the con-
stitutive equations. The polarizations densities are then discretized using
the PEEC basis functions. On the level of electrical circuits, they additional
unknowns require additional circuit elements, e.g., excess capacitances or
controlled sources. The main advantage of this approach is that it can be
applied to arbitrary material distributions and to a broad class of materi-
als, e.g., dielectric materials [85, 86], magnetic materials [87, 88, 89], lossy
materials [90] or dispersive materials [91]. On the other hand, the numeri-
cal cost is significantly higher because the dielectric and magnetic materials
have to be discretized and assigned degrees of freedom. From the point of
view of circuit interpretation, the additional circuit elements make the link
between the circuit elements and the basic physical processes more difficult.

4.4.5 PEEC Models of Current Sources

To complete the derivation of the PEEC method, excitations for the discretized
model have to be defined. We restrict ourselves to current sources, which are
needed for the definition of the impedance. In the classical PEEC method, [3],
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current sources are not modeled in the 3D domain. Instead, current sources are
added to the discretized model on the circuit level. In this section, we discuss the
implicit assumptions underlying this model.

In the physical reality, a source current has to be treated on equal footing with
the conduction currents. This means that in (4.17) and (4.19), the conduction
currents ~j of the 3D model have to be augmented by the source current density
~js. The source current density can then be discretized with the same set of basis
functions, (4.20), as the conduction current density. The discretized continuity
equation (4.17) then reads

dQ
dt
= −AI−AIs . (4.29)

When the discretized system is interpreted as an electrical circuit, AIs corresponds
to a classical current source term. More precisely, if an edge of the electrical circuit
corresponds to a current cell used for the discretization of a the source current, the
edge is assigned a current source. In order to also discretize the modified equation
of motion for ~A, (4.19), we have to compute the contribution of the source current
to the vector potential. Consider a source current which is modeled by a single
current cell, ~js = Is ~ms. Then, according to (4.24), the voltage induced in the i-th
current cell is given by

Vi = 〈 ~mi ,
dIs

dt

∫

µ0 ~ms

4π|x − x ′|
d3 x ′〉=

dIs

dt

�

∫

Vi

∫

Vs

µ0~ei · ~es

4π|x − x ′|
d3 xd3 x ′

�

=
dIs

dt
Lsi .

More generally and in matrix form, AT Φ= Ls
d Is
dt . On the level of electrical circuits,

this implies that there exist mutual inductances between the conduction current
cells and the source current cells. In the classical PEEC method, when modeling
current sources by lumped sources, these inductances are defined. This is justified
when Ls is small, i.e., when the physical length of the current sources is small.

Up to this point of the section, we discussed the discretized form of field-
theoretical current sources in the PEEC method. In the remaining part of the
section, we discuss the opposite situation, i.e., a field-theoretical form of lumped
current sources. This discussion is motivated by a problem in later chapters: In
Chap. 6, we formulate a field-theoretical model for lumped current sources. The
definition in Chap. 6 will be derived using a different reasoning, however, the result
will be shown to be equivalent.
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The field-theoretical formulation of lumped current sources can be found by
reversing the discretization procedure in Sect. 4.4.2, i.e.,

AT Φ= RI+L
d I
dt

⇒

¨

~j = σ(−∂t ~A−∇φ)
~A = µ0

∫

~j(x ′)G(x , x ′)d3 x ′

dQ
dt
= −AI−AIs ⇒ ∂tρ = −∇ · ~j −∇ · ~js

Φ= PQ ⇒ φ(x) =
1
ε0

∫

ρ(x ′)G(x , x ′)d3 x ′.

This set of equations3 differs from the homogeneous equations of motion for the
PEEC model, (4.16)-(4.19), in the inclusion of the divergence of the source current,
∇ · ~js. In the simple case that the source current consists of a single filament γs
starting at x0 and ending at x1, the divergence is given by

∇ · ~js = Is∇ · γs = −Is(δ
(3)(x − x1)−δ(3)(x − x0)) = −Isδ.

The points x0 and x1 are the 3D equivalents to the end nodes of the current source.
We appropriately call these points electrodes. In order to study the impact of the
additional term on the scalar and vector potential, we compute

∇·~A= −µ0

∫

(∇·~j)G(x , x ′)d3 x ′ = µ0∂t

∫

ρG(x , x ′)d3 x ′+µ0

∫

(∇·~js)G(x , x ′)d3 x ′.

The first term is exactly the time-derivative of the scalar potential, −ε0µ0∂tφ. The
second term can be expressed in terms of an auxiliary field g,

∫

(∇ · ~js)G(x , x ′)d3 x ′ = ε0 g ⇔ ε0∆g =∇ · ~js = Isδ.

The auxiliary field g will play an important role in our field-theoretical formulation
of lumped current sources in Sect. 6.2.1. To sum up, we repeat the two different
ways of incorporating current sources. On the left hand side, we assume an im-
pressed source current density ~js. On the right hand side, we rephrase the model
for lumped current sources:

3 Note that this set of equations is also equivalent to the PEEC equations of motion using the
modified nodal analysis [92].
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3D Current Sources PEEC Current Sources

∆~A+µ0
~jσ = −µ0

~js ∆~A+µ0
~jσ = 0

∇ · ~A+ ε0µ0∂tφ = 0 ∇ · ~A+ ε0µ0∂tφ = ε0µ0 g

~jσ +σ(∂t ~A+∇φ) = 0 ~jσ +σ(∂t ~A+∇φ) = 0.

(4.30)
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5 Spectral Theory

When an electromagnetic system is excited by a time-harmonic signal, the response
can be very violent if the frequency of excitation is close to a natural frequency of os-
cillation, an eigenfrequency. The importance of finding the eigenfrequencies cannot
be overestimated: We will show that from the eigenfrequencies of a physical system,
the response to an arbitrary excitation can be computed. In particular, the response
can be divided into relevant and irrelevant contributions depending on whether the
eigenfrequencies are close to or far away from the frequency range of interest. The
mathematical background, spectral theory of matrix and operator polynomials, is pre-
sented in this chapter.

It is impossible to analytically compute the natural frequencies and the associated
natural modes of oscillation for practical systems. We therefore rely on computational
schemes and show how a numerical implementation can be obtained.

5.1 Polynomial Eigenvalue Problems

5.1.1 Definition

Let X be a linear space over the complex numbers C. Let L (X ) be the algebra of
linear operators on X , L (X ) = { f : X →X , f linear}. For simplicity, we restrict
ourselves to finite-dimensional spaces1, and we can identify X ' Cn for some n.
When X is equipped with a basis, L (X ) is the algebra of complex n× n matrices
acting on Cn.

Consider next a function L : C → L (X ). In the course of this thesis, we have
encountered such functions frequently: The equations of motion for electrical cir-
cuits (Sect. 2) or Maxwell’s and Darwin’s equations for the electromagnetic fields
(Sect. 3) in the frequency domain are exactly such maps from C, the complex fre-
quency, to the algebra of complex-valued matrices. In the absence of complicated,
frequency-dependent materials, we can restrict ourselves to functions which are

1 For the description of electromagnetic systems in terms of field equations, X really is the
infinite-dimensional space of vector fields on R3, and L (X ) is the algebra of differential op-
erators on X . In this case, we interpret X and L (X ) in their discetized form, e.g., using the
FEM.
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polynomials in the complex frequency s. We therefore define matrix polynomials L
by

L(s) =
l
∑

k=0

skAk. (5.1)

As in the scalar case, we call Al 6= 0 the leading coefficient.

In the following, we restrict ourselves to regular matrix polynomials, i.e. L(s)
is regular for almost all s ∈ C2. The following definition describes all complex
numbers where the matrix polynomial becomes singular:

Definition 5.1. Let L : C → L (X ) be a matrix polynomial. The complex number
s0 is called an eigenvalue if dim ker (L(s0)) ≥ 1. The (right) eigenspace T associated
to the eigenvalue s0 is the corresponding null space, T = ker (L(s0)). The dimension
β0 = dim(T ) of the eigenspace is called the geometric multiplicity. A vector x ∈ T is
called (right) eigenvector. The pair (x, s0) is called a (right) eigenpair.

Left eigenspaces and left eigenvectors can be defined similarly by exchanging
L(s0)→ L(s0)† in Def. 5.1.

For a matrix polynomial of degree l acting on an n-dimensional vector space,
the characteristic polynomial p(s) = det(L(s)) is a polynomial in s of degree ≤ nl,
with equality if the leading coefficient Al is invertible. Using standard methods, the
characteristic polynomial can be decomposed into a product of nl linear factors3,

p(s) =
K
∏

k=1

(s− sk)
αk , (5.2)

where
∑K

k=1αk = nl. The roots sk of the characteristic polynomial are exactly
the eigenvalues of the matrix polynomial. The numbers αk are called algebraic
multiplicities. Generally, βk ≥ 1⇔ αk ≥ 1 and αk ≥ βk. These relations between
geometric and algebraic multiplicites allow the following configurations:

• If αk = βk = 1, the corresponding eigenvalue sk is said to be simple.

• If αk = βk > 1, the corresponding eigenvalue sk is said to be semisimple or
degenerated.

• If αk > βk, the corresponding eigenvalue sk is said to be defective.

2 It will turn out that for finite-dimensional X , if L(s) is regular for at least one s ∈ C, then L(s)
is singular for a discrete set of complex values only.

3 We omit an unimportant, constant scaling factor.
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5.1.2 Spectral Theory

For finite-dimensional, polynomial, regular eigenvalue problems, the roots of the
characteristic polynomial, i.e., the eigenvalues, form a discrete set. The set of
eigenvalues is called the spectrum of the matrix polynomial,

σ (L) = {s : det(L(s)) = 0}= {s1, · · · , sK} . (5.3)

In this section, we discuss the properties of the spectrum. In particular, we ex-
hibit in more detail the relation between geometric and algebraic multiplicities.
Furthermore, we derive an expression for the resolvent form L(s)−1 in terms of
eigenvalues and eigenvectors of the matrix polynomial. Most properties will be
derived by reformulating a polynomial eigenvalue problem as a linear eigenvalue
problem, using a linearization procedure.

Linearization

Let L(s) be a matrix polynomial of degree l on Cn.

Definition 5.2. Let E(s), F(s) be regular matrix polynomials on Cnl , with constant
determinants, det(E(s)) = E 6= 0, det(F(s)) = F 6= 04. The pair (E(s),F(s)) is called a
linearization of L(s) if [93]

L(s)⊕
�

⊕l−1
k=11n×n

�

= E(s) (A−s1)F(s) (5.4)

As the name indicates, a linearization transforms a polynomial eigenvalue problem
of degree l to a linear eigenvalue problem. However, while the original matrix
polynomial acts on an n-dimensional linear space, the linearized polynomial acts
on an nl-dimensional linear space.

From the range of linearizations [94, 95, 96], two are particularly important and
are almost exclusively used in practice:

• Let

4 Matrix polynomials with constant determinant are called unimodular.
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E(s) =













Bl−1 −Bl−2 · · · −B1 −B0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













F(s) =













1 0 0 · · · 0
s1 1 0 · · · 0
s21 s1 1 · · · 0

...
...

...
. . .

...
sl−11 sl−21 sl−31 · · · 1













(5.5)

where Bk =
∑k

m=0 sm Al−k+m. The pair E(s),F(s) is a linearization for L(s)
with

A= C1 =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−Al

−1A0 −A−1
l A1 −A−1

l A2 · · · −A−1
l Al−1













(5.6)

The linearization provided by E(s) and F(s) is called the first companion
form. As F(s) can be easily inverted, the first companion form is especially
suitable for the study of right-hand eigenvectors.

• Let
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E(s) =













1 s1 s21 · · · sl−11
0 1 s1 · · · sl−21
0 0 1 · · · sl−31
...

...
...

. . .
...

0 0 0 · · · 1













F(s) =













−Bl−1 1 0 · · · 0
−Bl−2 0 1 · · · 0

...
...

...
. . .

...
−B1 0 0 · · · 1
−B0 0 0 · · · 0













(5.7)

where Bk is as defined above. The pair E(s),F(s) is a linearization for L(s)
with

A= C2 =













0 0 · · · 0 −Al
−1A0

1 0 · · · 0 −A1Al
−1

0 1 · · · 0 −A2Al
−1

...
...

. . .
...

...
0 0 · · · 1 −Al−1Al

−1













(5.8)

The linearization provided by E(s) and F(s) is called the second companion
form. In this case, E(s) can be easily inverted, the second companion form is
therefore especially suitable for the study of left-hand eigenvectors.

The matrices C1 and C2 are similar, C2B= BC1, with similarity transformation

B=













A1 A2 · · · Al−1 Al
A2 A3 · · · Al 0
...

... . .
. ...

...
Al−1 Al · · · 0 0
Al 0 · · · 0 0













. (5.9)
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Jordan Triples for Polynomial Eigenvalue Problems

Using a linearization, e.g. the first or second companion form, the polynomial
eigenvalue problem is reduced to a standard eigenvalue problem. We can then
borrow methods from the spectral theory of matrices. In particular, every matrix is
similar to a matrix in Jordan normal form, i.e., there exists a Jordan matrix

J= ⊕K
k=1Jk Jk =













λk 1
λk 1

...
. . .
λk 1

λk













, (5.10)

and there exist matrices X̃ and Ỹ such that5

C1 = X̃JX̃−1 C2 = Ỹ−1JỸ. (5.11)

From the structure of C1 and C2, it can be concluded [93] that X̃ and Ỹ must be of
the form

X̃=









X
XJ
...

XJl−1









Ỹ=
�

Y† JY† · · · Jl−1Y†
�

, (5.12)

and

l
∑

k=0

AkXJk = 0
l
∑

k=0

JkY†Ak = 0. (5.13)

Furthermore, the similarity transformation B connecting C1 and C2 can be used to
construct the relationship

ỸBX̃= 1nl×nl . (5.14)

The triple (X,J,Y) is called a canonical triple (or Jordan triple) for the matrix poly-
nomial L(s).

5 C1 and C2 are similar to the same Jordan matrix because they are similar according to (5.9).
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Jordan Triples, Eigenvalues, and Eigenvectors

Consider a polynomial eigenvalue problem L(s) with canonical triple (X,J,Y). The
characteristic polynomial is given by

p(s) = det (L(s)) = det (J− s1) =
K
∏

k=1

det (Jk − s1) =
K
∏

k=1

(λk − s)αk . (5.15)

The diagonal elements of the Jordan blocks, (5.10), are thus exactly the eigenval-
ues of the matrix polynomial L(s), sk = λk. The sum of the sizes of all Jordan
blocks with the same eigenvalue λk determines the algebraic multiplicity of the
eigenvalue.

Furthermore, consider the columns
�

xk,1,xk,2, · · · ,xk,αk

�

of X corresponding to
the k-th Jordan block. It can be shown that [93]

i
∑

j=0

1
j!

d jL
ds j
(sk)xi− j+1 = 0, i = 0, · · · ,αk − 1.

The series
�

xk,1,xk,2, · · · ,xk,αk

�

forms a (right) Jordan chain of length αk. In par-
ticular, xk,1 is a right eigenvector with eigenvalue sk. Similarly, the corresponding
series of columns

�

yk,αk
,yk,αk−1, · · · ,yk

�

of Y forms a left Jordan chain and yk,αk
is

a left eigenvector with eigenvalue sk.

If all Jordan chains have length 1, the matrix polynomial is called diagonalizable.
In this case, the Jordan blocks Jk all have lenght 1, the Jordan matrix J is diagonal.
However, diagonalizability cannot be assumed and has to be proven for a specific
matrix polynomial.

The Resolvent Form

The inverse of a matrix polynomial, L(s)−1, is called the resolvent form for the
matrix polynomial L(s). The resolvent form can only be defined for all complex
values s which are not contained in the spectrum, s /∈ σ(L). The resolvent form
is crucial for the analysis of many physical systems, as it is provides the response
of the system to a general excitation. The resolvent form can be computed from a
Jordan triple using the following theorem, [97],
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Theorem 5.1. Let L(s) be a matrix polynomial with invertible leading coefficient,
(X,J,Y) be its canonical triple. The resolvent form L(s)−1 is given by

L(s)−1 = X (J− s1)−1 Y† ∀s /∈ σ(L). (5.16)

The inverse Jordan matrix in (5.16) can be computed using

(J− s1)−1 = ⊕K
k=1 (Jk − s1)−1 .

In the important special case where the matrix polynomial is diagonalizable, the
following relation holds

L(s)−1 =
K
∑

k=1

1
sk − s

xky†
k. (5.17)

Stability

In Sect. 2.2 we introduced the Fourier transform, and specified transformations
between frequency and time domain. With the change of variables s → d

dt , L( d
dt )

can be viewed as l-th order system of ordinary differential equations in t. The
general solution can be written in terms of the Jordan triple (X,J,Y) by, [98],

f (t) = XeJt f0, (5.18)

and f0 is determined by the the initial condition at t = 0. More precisely, the
Green’s function for the differential operator L( d

dt ) is given by, [98],

G(t, t ′) = XeJ(t−t′)Y†. (5.19)

A physical system is defined to be stable if the solution decays to zero, regardless
of the initial configurations. It has been shown [98, 99] that the system is stable if
and only if ℜ(sk)< 0,∀k.
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5.1.3 Special Matrix Polynomials

• A matrix polynomial L is self-adjoint with respect to a scalar product 〈◦,◦〉,
if L(s) is self-adjoint for all s ∈ R. In a basis which is orthonormal with
respect to the scalar product, this is equivalent to the requirement that all
coefficient matrices are hermitian, i.e., Ak = A†

k. If x is a right eigenvector
of a self-adjoint matrix polynomial with eigenvalue s, then a left eigenvector
with eigenvalue s̄ is given by y= λx and λ is an arbitrary scaling parameter.

• A matrix polynomial L is real if L(s) is real for all s ∈ R, i.e., if all coef-
ficient matrices are real. If x,y are right and left eigenvectors respectively
with eigenvalue s, then x̄, ȳ6 are right and left eigenvectors respectively with
eigenvalue s̄.

• A matrix polynomial L is real symmetric if it is real and hermitian. From the
properties of real and hermitian matrix polynomials, it follows that if x is a
right eigenvector of a real symmetrix matrix polynomial with eigenvalue s,
then a left eigenvector with eigenvalue s is given by y = λx̄ and λ is again
an arbitrary scaling parameter.

5.1.4 Linear Matrix Polynomials

In the previous sections, we developed a spectral theory for matrix polynomials
of arbitrary degree. In the following sections, we discuss the important special
cases needed in this work, linear and quadratic matrix polynomials. The simplest
nontrivial polynomial eigenvalue problem reads

Ax= sx,

and is a special case of the theory developed above with A0 = −A and A1 = 1.
We restrict our investigation to real symmetric matrices A. Symmetric matrices are
self-adjoint with respect to the standard real scalar product 〈◦,◦〉 : 〈x,y〉 = xT y.
Then the following theorem holds, [100],

Theorem 5.2. Let A be a real symmetric n× n matrix. Then the matrix polynomial
s1−A is diagonalizable. All eigenvalues and eigenvectors are real. The left eigenvectors
are proportional to the right eigenvectors.

6 With x̄ we denote the vector where all vector entries are complex conjugated.
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The proportionality can be expressed by a diagonal matrix Λ = diag(λ1, · · · ,λn),
Y= XΛ. Applying (5.14) with Al = A1 = 1 and Y= XΛ yields

XT Y= XT XΛ= 1,

i.e., the eigenvectors can be chosen orthogonal, 〈xk,xl〉= λ−1
k δkl .

More generally, we can consider the generalized linear eigenvalue problem

Ax= sBx, (5.20)

with complex n×n matrices A and B. This corresponds to a polynomial eigenvalue
problem with A0 = −A, A1 = B. Again, we restrict ourselves to real symmetric
matrices A and B. Furthermore, we require B to be positive definite, i.e., 〈x,Bx〉 ≥
0,∀x 6= 0. In this case, a scalar product 〈◦,◦〉B = 〈◦,B◦〉 can be defined. The
generalized linear eigenvalue problem (5.20) can be transformed into a standard
linear eigenvalue problem Ãx = B−1Ax = sx and Ã is self-adjoint with respect to
the scalar-product 〈◦,◦〉B. The following theorem is a generalization of results for
standard linear eigenvalue problems:

Theorem 5.3. Let A, B be real symmetric n×n matrices, B be positive definite. Then,
the matrix polynomial s B−A is diagonalizable. All eigenvalues and eigenvectors are
real. The left eigenvectors are proportional to the right eigenvectors.

The spectral properties of generalized linear eigenvalue problems are thus very
similar to the spectral properties of standard linear eigenvalue problems. The main
difference is in the normalization condition: We again introduce a diagonal propor-
tionality matrix Λ= diag(λ1, · · · ,λn) such that Y= XΛ. Applying the normalization
condition (5.14) yields

XT BY= XT BXΛ= 1, (5.21)

i.e., the eigenvectors can be chosen orthogonal with respect to the scalar product
〈◦,◦〉B, 〈xk,xl〉B = 〈xk,Bxl〉= λ−1

k δkl .

In both cases, the resolvent form of the matrix polynomial can be computed
according to (5.16), which reads in the linear case

(A−s B)−1 =
n
∑

k=1

1
sk − s

xk yT
k =

n
∑

k=1

λk

sk − s
xk xT

k . (5.22)
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5.1.5 Quadratic Matrix Polynomials

Let A0, A1, A2 be n × n matrices. We again restrict our analysis to real symmet-
ric matrix polynomials, i.e., Ak is real symmetric for k = 0, 1,2. The quadratic
eigenvalue problem reads

A0 x+s A1 x+s2 A2 x= 0.

According to Sect. 5.1.3, the eigenvalues of a real symmetric matrix polynomial are
real or come in complex conjugate pairs. If x is a right eigenvector with eigenvalue
s, then the corresponding left eigenvector with eigenvalue s, is given by λx̄ and λ
is an arbitrary scaling coefficient.

Quadratic matrix polynomials with only real eigenvalues are called hyperbolic.
It has been shown that all eigenvalues of hyperbolic polynomials are semisimple
[99]. In particular, hyperbolic pencils are diagonalizable. Quadratic pencils with
nonreal eigenvalues are called elliptic. The main difficulty in the spectral analysis
of elliptic eigenvalue problems stems from the fact that the linearizations do not
respect the symmetry of the problem. In general, the simple relationship XΛ = Y
between left and right eigenvectors has to be replaced by the more complicated
relationship, [99],

Y= XPΛ. (5.23)

where P is a matrix of +1, -1, and 0, called the sign characteristic, [101]. The sign
characteristic is an invariant of the matrix polynomial.

In the following, we restrict ourselves to the important special case of real sym-
metric matrix polynomials which are diagonalizable. In this case, the relation be-
tween left and right eigenvectors can be written as

Y= X̄Λ,

and Λ is a diagonal proportionality matrix. Inserting this expression into the nor-
malization condition (5.14) yields

1= XT A1 XΛ+XT A2 XΛ J+ JXT A2 XΛ. (5.24)

For the individual generalized eigenvectors, this relationship reads

xT
k A1 xl +2sk xT

k A2 xl = λ
−1
k δkl . (5.25)
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With the normalization (5.24), the resolvent form reads

(A0+s A1+s2 A2)
−1 =

2n
∑

k=1

λk

sk − s
xk xT

k . (5.26)

5.1.6 Infinite Eigenvalues

In the previous sections, we always assumed that the leading coefficient Al was
regular. This will not always be the case for the physical systems discussed in this
thesis. The properties of the spectrum in this case can best be explained when the
reverse polynomial is introduced,

R[L](s) = sl L(
1
s
) =

l
∑

k=0

sl Al−k = Al +s Al−1+ · · ·+ sl A0 . (5.27)

If x is an eigenvector of L(s) with eigenvalue s 6= 0, then it is also an eigenvector
of R[L](s) with eigenvalue 1/s. As long as Al is regular, there is no eigenvalue of
R[L](s) at s = 0. If Al becomes singular, however, there are eigenvalues of R[L]
at s = 0. These eigenvalues formally corresponds to eigenvalues of L(s) at s =∞,
they are therefore called infinite eigenvalues.

Studying the spectral properties of polynomial eigenvalue problems with singu-
lar leading coefficient is simplified when the spectrum is broken into two parts: In
order to determine the finite part of the spectrum, the original polynomial L(s) is
studied with the methods developed in the previous sections. In order to determine
the infinite part of the spectrum, the eigenvalues at 0 of the reverse polynomial are
studied. More precisely, instead of one Jordan triple (X,J,Y), there are two Jordan
triples [102]

(X f ,J f ,Y f ) (X∞, J∞,Y∞), (5.28)

such that (X f ,J f ,Y f ) comprises all Jordan blocks and associated vectors in X and
Y corresponding to the finite eigenvalues of L. On the other hand, (X∞,J∞,Y∞)
comprises all Jordan blocks and associated vectors corresponding to zero eigenval-
ues of the reverse polynomial R L. In particular, X∞ and Y∞ satisfy the normal-
ization condition
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�

Y†
∞, · · · ,Jl−1

∞ Y†
∞

�

·





Al−1 · · · A0
... . .

. ...
A0 · · · 0



 ·





X∞
...

X∞ Jl−1
∞



= 1. (5.29)

The resolvent form then consists of two contributions from the finite and infinite
Jordan triples,

L(s)−1 = X f

�

J f −s1
�−1

Y†
f +X∞ (1− s J∞)

−1 Y†
∞ . (5.30)

In the important special case of a diagonalizable matrix polynomial, this result
reads

L(s)−1 =
m
∑

k=1

1
sk − s

x f ,k y†
f ,k+

nl−m
∑

k=1

x∞,k y†
∞,k . (5.31)

The infinite eigenmodes lead to an offset of the resolvent form without changing
the structure. If, e.g., the resolvent form has a physical meaning as transfer function
of an electrical circuit, this offset corresponds to a correction of the values for
inductance at low frequencies.

5.2 Numerical Solution of Eigenvalue Problems

For the analysis of the spectral properties of practical matrix polynomials, e.g.,
polynomials arising from the discretization of electromagnetic field problem, a nu-
merical approach is the only feasible way due to the large size of the matrices.
Even though there exist algorithms to compute the Jordan normal form for ma-
trices, [103], or algorithms for the computation of the Jordan canonical form of
matrix polynomials, [104], the numerical computation of the Jordan form is in
general not feasible. It can be shown analytically that the Jordan matrix depends
discontinuously on the original matrix, [105], the conditioning of the numerical
problem can be very bad.

In this thesis, we therefore restrict ourselves to diagonalizable matrix polynomi-
als. Computing the Jordan normal form is then equivalent to computing numeri-
cally the eigenvectors and eigenvalues of a large matrix. For this problem, fast and
powerful algorithms exist and will be explained below. The set of algorithms can
be divided into two large groups, designed for specific eigenvalue problems:
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• The first group of algorithms computes all eigenvalues and corresponding
eigenvectors for a given matrix. Such algorithms are generally called direct
eigenvalue solvers. As the eigenvectors of sparse matrices are in general
dense, these algorithms can be used for small to medium size matrices only
due to memory restrictions.

• The second group of algorithms computes few eigenvalues and correspond-
ing eigenvectors for large matrices, which are typically sparse. Most algo-
rithms in the this group compute eigenvalues iteratively according to a pro-
jection procedure, i.e., the matrix is projected onto a suitably constructed
sub-vector space which contains the eigenvectors.

It has to be noted, that most algorithms in the second group do not actually solve
the eigenvalue problem. Instead, by means of projection they reduce a large-scale
eigenvalue problem to a small-scale eigenvalue problem which can be solved with
a direct solver.

5.2.1 Direct Solvers

One of the most widely used direct algorithm is the QR algorithm, [106]. In order
to compute the eigenvalues and eigenvectors of a matrix A, a series of matrices
A0,A1,A2, · · · is defined iteratively. In the k-th step, the QR decomposition of the
k-th matrix is computed, Ak = Qk Rk, where Qk is an orthogonal matrix and Rk is
an upper triangular matrix. The series of matrices Ak then converges towards a
triangular matrix with the eigenvalues on the diagonal [107].

The classical implementation for symmetric matrices can be improved consid-
erably, if the matrix A is transformed to tridiagonal form7 prior to starting the QR
algorithm. In the classical algorithm, computing the QR decomposition in each step
requires O (n3) operations. Computing the QR decomposition of a tridiagonal ma-
trix requires only O (n) operations. Another O (n3) operations for tridiagonalization
have to be spent only once, [108].

Furthermore, the convergence rate of the classical QR algorithm can be increased
significantly if the definition of the matrix Ak takes into account approximate infor-
mation about the eigenvalues which can be computed from the not yet converged
matrix Ak−1. Such adaptions of the classical QR algorithm are called shifted QR
algorithms, e.g., [109, 110].

7 More generally, a matrix can be transformed to Hessenberg form. The Hessenberg form for
symmetric matrices is a tridiagonal matrix.
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In this work, we use the Lanczos procedure described in 5.2.3 in order to project
a large-dimensional eigenvalue on a low-dimensional eigenvalue problem. The
low-dimensional eigenvalue problem is then solved using an implementation of
the QR algorithm in LAPACK, [111]: First we use the routine xgehrd in order to
transform a symmetric matrix to tridiagonal form. We then use the routine xhseqr
in order to compute the eigenvalues of the tridiagonal matrix using a multi-shift
QR algorithm.

5.2.2 Iterative Solvers

For large eigenvalue problems, computing all eigenvalues and associated eigen-
vectors becomes prohibitively expensive. Fortunately, in practice, only few of the
eigenvalues and eigenvectors are needed. Such eigenvalue problems can be solved
very efficiently in an iterative way.

For purposes of illustration, consider the standard eigenvalue problem Ax =
s x,x ∈ Cn. Further consider an m-dimensional subspace V ⊂ Cn. Any vector y ∈ V
can be written

y= Vỹ,

where ỹ ∈ Cm and the columns of V are basis vectors for V . An eigenvector x of A
with eigenvalue s is contained in the subspace if there exists x̃ ∈ Cm such that

(AV) x̃= sVx̃. (5.32)

The eigenvector x is then given by x = Ṽx̃. In general, it is impossible to construct
a subspace which contains the eigenvector exactly. Instead, the iterative projection
methods generate a series of subspaces V1, V2, · · · such that each subspace contains
a better approximation of the eigenvector than the previous subspaces. In this case,
for all subspaces Vk the projected eigenvalue equation (5.32) is over-determined
and cannot be solved exactly. In order to render (5.32) regular, a testing scheme
has to be applied, i.e., the solution is also restricted to an m-dimensional subspace
W . Eq. (5.32) then reads

�

WTAV
�

x̃= s̃WTVx̃. (5.33)

where the columns of W form a basis for W . The simplest choice W = V cor-
responds to the Galerkin scheme familiar to us from the discretization of partial
differential equations in Chap. 4. The projection procedure is then called the
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Rayleigh-Ritz procedure. An eigenvalue s̃ of (5.33) is called a Ritz value, an
eigenvector x̃ is called a Ritz vector. Due to the low dimension of the projected
eigenvalue problem in (5.33), the Ritz values and Ritz vectors can be computed
using a direct method.

A priori, the Ritz values and Ritz vectors are not related to the eigenvalues and
eigenvectors of the original problem. However, for suitably chosen subspaces V ,
the Ritz values and Ritz vectors can be shown to be good approximations for the
eigenvalues and eigenvectors of the original problem. An efficient iterative projec-
tion method is capable of constructing very low-dimensional subspaces V which
nevertheless contain good approximations of the eigenvalues and eigenvectors of
the original problem. One such method will be presented in the following section.
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5.2.3 The Lanczos Method for Eigenmode Computation

The Lanczos method for the solution of generalized eigenvalue problems is one of
the most important iterative projection techniques. The subspace V used for the
projection is chosen equal to a Krylov space, [112]:

Vk =Kk(A,x) = span(x,Ax,A2 x, · · · ,Ak−1 x). (5.34)

The Krylov method can therefore be seen as a generalization of the power iteration
method, [105], where Vk = span(Ak−1 x). It is well known that the power iteration
method converges to the subspace spanned by the eigenvector with largest abso-
lute eigenvalue. Similarly, the Lanczos method produces good approximations of
eigenvalues at either end of the spectrum within few iterations. Such eigenvalues
are called exterior eigenvalues. On the other hand, many iterations are necessary
to produce good approximations of interior eigenvalues, [105].

In this section, we restrict ourselves to linear, real symmetric eigenvalue prob-
lems. The Lanczos method can also be generalized to non-symmetric (or, more gen-
erally, non-hermitian eigenvalue problems). It is then called the Arnoldi method
[113]. Eigenvalue problems of higher degree (e.g., quadratic eigenvalue problems)
can be solved using the linearization procedure shown in Sect. 5.1.2.

The Lanczos Algorithm for Standard Eigenvalue Problems

With the specification of the projection space Vk in the previous section, the projec-
tion method is in principle fully defined. However, it remains to specify a basis for
the projection space which makes the method as numerically stable as possible and
at the same time allows for an efficient implementation.

In practice, each Lanczos iteration produces one more basis vector for the pro-
jection space, thereby increasing the dimension of the projection space by one. In
order to minimize the effect of rounding errors, it is advisable to orthonormalize
each new basis vector with respect to all previous basis vectors using the modified
Gram-Schmidt procedure. One nice feature about the Lanczos method is that due
to the construction of the projection space as a Krylov space, each new Lanczos
basis vector has to be orthogonalized with respect to the two previous basis vectors
only. It is orthogonal to all previous basis vectors by construction, [105].

Furthermore, instead of explicitly projecting the eigenvalue problem onto the
Krylov space, the projected eigenvalue problem can be constructed implicitely dur-
ing the orthonormalization process. In particular, if the basis vectors are computed
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as described above, the projected eigenvalue problem consists of computing the
eigenvalues of a tridiagonal matrix.

Plugging everything together, the Lanczos algorithm in each step computes a
matrix Ak corresponding to the projection of the original matrix A on the Krylov
space of degree k. The convergence of the Ritz values of the projected matrix is
monitored and the iteration is stopped when a satisfying accuracy is reached.

Algorithm 5.1. The Lanczos Method for Hermitian Eigenvalue Problems
Input: Matrix A, Initial Vector x, Maximum Number of Iterations N

x1 = x, o1 =
q

x†
1 x1

for k = 1 : N do
xk = xk /ok
xk+1 = Axk
xk+1 = xk+1−ok xk
dk = x†

k xk+1

ok+1 =
q

x†
k+1 xk+1

Construct projected matrix:

Ak =









d1 o2 0 · · · 0
o2 d2 o3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dk









Compute Ritz values s̃l and Ritz vectors x̃l
if Converged then

Break
end if

end for
Compute eigenvalues and eigenvectors of original problem:
s = s̃, x= V x̃

The Lanczos Algorithm for Generalized Hermitian Eigenvalue Problems

In this work, instead of the standard eigenvalue problem, we usually have to deal
with generalized linear eigenvalue problems, Ax = s Bx. We restrict ourselves to
real symmetric (or, more generally, hermitian) eigenvalue problems. The spectral
properties of the generalized eigenvalue problem in comparison to the standard
eigenvalue problem are discussed in detail in Sect. 5.1.4. In particular, it is shown
that when the generalized eigenvalue is reformulated as a standard eigenvalue
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problem, B−1 Ax = s x, the matrix B−1 A is self-adjoint with respect to the scalar
product defined by B, 〈x,y〉B = 〈x,By〉. In order to apply the Lanczos algorithm
to generalized linear eigenvalue problems, we therefore only have to replace A by
B−1 A and the standard inner product 〈◦,◦〉 by the B inner product 〈◦,◦〉B:

Algorithm 5.2. The Lanczos Method for Hermitian Eigenvalue Problems
Input: Matrices A, B, Initial Vector x, Maximum Number of Iterations N

x1 = x,y1 = Bx1, o1 =
q

x†
1 y1

for k = 1 : N do
xk = xk /ok,yk = yk /ok
yk+1 = Ayk
yk+1 = yk+1−ok yk
dk = x†

k yk+1
xk+1 = B−1 yk+1

ok+1 =
q

x†
k+1 yk+1

Construct projected matrix:

Ak =









d1 o2 0 · · · 0
o2 d2 o3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dk









Compute Ritz values s̃l and Ritz vectors x̃l
if Converged then

Break
end if

end for
Compute eigenvalues and eigenvectors of original problem:
s = s̃, x= V x̃

Block Lanczos Algorithm

In the previous versions of the Lanczos algorithm, the Krylov spaces were built
from one single starting vector. This leads to poor convergence when searching for
closely clustered eigenvalues [114]. Even worse, if there are multiple eigenvectors
with the same eigenvalue, only one of them will be found by the Lanczos procedure.

All above mentioned problems can be solved by initializing the Lanczos proce-
dure with multiple starting vectors instead of a single starting vector [114, 115].
The standard Lanczos procedure has to be altered in the following way:
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• In each Krylov iteration, instead of a single new Krylov vector, a block of new
Krylov vectors is generated.

• Instead of orthonormalizing the new Krylov vector with respect to the two
previous Krylov vectors, each new Krylov vector has to be orthonormalized
with respect to the two previous blocks of Krylov vectors.

• When the matrix is projected onto the block Krylov space, the resulting ma-
trix is no longer tridiagonal. Instead, it is block tridiagonal and the lengths
of the blocks are equal to the Krylov block sizes.

• The standard Krylov method breaks down when the new Krylov vector is
linearly dependent to the already existing Krylov space. In this case, the
Krylov sequence is exhausted. In the block Lanczos method, when only one
new Krylov vector is linearly dependent, the Krylov iterations can continue.
However, the linearly dependent Krylov vector has to be removed from the
Krylov space. This process is called deflation, [105].

• When deflation occurs, the block tridiagonal form of the projected matrix
is destroyed by the appearence of fully populated rows and columns cor-
responding to the last linearly independent Krylov vector in the Krylov se-
quence, [105].

Orthonormalization Schemes

In the standard Lanczos algorithm, a new Krylov vector is only orthonormalized
with respect to the previous two Krylov vectors (or blocks of Krylov vectors for the
block Lanczos procedure). By construction, the new Krylov vector is already or-
thogonal to all previous Krylov vectors. However, this analytical result holds true
for infinite arithmetic only. Numerically, there is an increasing loss of orthogonality
between new Krylov vectors and old Krylov vectors, i.e., new Krylov vectors are
orthogonal to the newer Krylov vectors only, while orthogonality may be lost com-
pletely with respect to very old Krylov vectors, [116]. Even worse, as soon as an
eigenpair has converged, numerical perturbations will tilt the new Krylov vectors
in the direction of the converged eigenvector, leading to the multiple appearence
of the same eigenvalue and eigenvector, [117].

The simplest solution is to perform in each step a full reorthonormalization,
[105]. The modified algorithm can be implemented with minor changes to the orig-
inal algorithm, however, as the workload increases quadratically with the number
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of Krylov vectors, it is practical for small Krylov spaces only. An more efficient al-
ternative is provided by selective reorthonormalization schemes, [118, 119], where
the new Krylov vector is orthonormalized with respect to selected Krylov vectors
only.

Finally, it is also possible to allow orthonormality to be lost and to remove dupli-
cate copies of the eigenvectors by analysing the spectral properties of the projected
matrix, [120].

In this work, we use the full reorthonormalization scheme in combination with
a restart scheme (see below) in order to keep the size of the Krylov space small.

Restarts

The numerical experience with the Lanczos method shows that the total number
of Krylov vectors is generally much larger than the number of converged eigenvec-
tors. Hoewever, large Krylov spaces are undesirable due to memory requirements,
excessive computational loss and the loss of orthogonality in long Krylov iterations.

This numerical experience can be understood from the fact that the initial vec-
tor is in general a linear combination of many eigenvectors from all parts of the
spectrum and (in infinite precision) the Krylov iteration will not stop until all
eigenvectors present in the start vectors have been recovered. In practical situ-
ations, however, we are interested in few eigenvectors from a small part of the
spectrum only. Ideally, the initial vector should thus be a linear combination of the
the good eigenvectors, i.e., the eigenvectors of interest, only.

It is impossible in general to construct such an initial vector. However, it is
possile to compute a crude approximation of these eigenvectors by a few steps
of the Lanczos procedure and construct the initial vector of a new Krylov space
from the crude approximations. In other words, after a few Krylov iterations, all
unwanted Ritz vectors are discarded from the Krylov space and a new initial vector
is constructed from the remaining Ritz vectors, [105, 121]. Because the Lanczos
procedure is started several times with different start vectors, it is called restarted
Lanczos method. In this work, a block variant of the simple explicit restart scheme
is employed. Instead of a single restart vector, all Ritz vectors which are in the
desired part of the spectrum are used for the restart.

A more sophisticated technique for the restart of the Lanczos procedure is given
by implicit restart schemes, [122, 123]. In the implicit restart schemes, the shifted
QR iteration is used to discard the bad part of the Ritz spectrum and compress the

97

www.Techbooksyard.com



www.manaraa.com

good part of the Ritz spectrum in a smaller subspace. Another more recent tech-
nique for the implicit restart of the Lanczos method is called thick restarts, [124].
In the thick restart technique, the set of Ritz vectors is also divided into wanted and
unwanted Ritz vectors. The unwanted Ritz vectors are discarded. Instead of using
the wanted Ritz vectors as initialization for a new Lanczos run, the Krylov space is
built on top of the existing Ritz vectors.

Shift-and-Invert Lanczos

The Lanczos method provides fast convergence to exterior eigenvalues whereas
convergence to interior eigenvalues is very slow. In particular, it is impossible to
directly compute all eigenvalues within a certain part of the spectrum. However,
using suitable spectral transformations, this part of the spectrum can be turned
inside out, i.e., interior eigenvalues can be made exterior eigenvalues.

More precisely, consider a matrix A with spectrum S. Imagine that we want
to compute all eigenvalues in the spectral region nearest to s0. Now consider the
matrix

Ã= (A−s01)−1

It can be shown, [105], that if x is an eigenvector of Ã with eigenvalue 1/(s − s0),
then x is an eigenvector of A with eigenvalue s. In other words, the eigenvalues
of A nearest to s0 are exactly the exterior eigenvalues of Ã. Instead of starting the
Lanczos iterations with the matrix A, convergence can be sped up by starting the
Lanczos iterations with the matrix Ã = (A−s01)−1. The resulting variant of the
Lanczos algorithm is called Shift-and-Invert Lanczos (SI Lanczos).

The SI Lanczos method allows to compute selected interior eigenvalues. For
generalized eigenvalue problems, a matrix inversion is needed in any case and the
numerical workload does not increase. A staggered procedure for the computation
of interior eigenvalues is shown in [125]. Instead of directly applying the SI Lanc-
zos procedure, the matrix is first projected on a very large Krylov space using the
standard Lanczos method. The SI Lanczos algorithm is then applied in order to
compute interior eigenvalues of the reduced matrix. This procedure removes the
need to directly invert a very large matrix.
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6 A Method for the Automated Construction of Equivalent Electrical Circuit
Models

In the previous chapters, we showed two different models for electromagnetic systems:
a description in terms of electrical circuits (Chap. 2) and a description in terms of
electromagnetic fields (Chap. 3). In this chapter, we discuss in detail the connection
of the two models. The discussion in this chapter leads to a very natural and general
procedure for the construction of electrical circuit models.

In order to construct electrical circuit models, three basic questions have to be an-
swered. The questions will be discussed and answered in Sect. 6.1-6.3 respectively:

1. What information is needed in order to construct unique, physical electrical
circuit models for an electromagnetic component or system?

2. How can this information be obtained?

3. How does the information have to be used in order to construct the electrical
circuit model?

Having answered the three questions, we propose a procedure for the automated con-
struction of physical equivalent electrical circuits in Sect. 6.4. We compare the pro-
cedure with existing techniques, such as the PEEC method. We discuss in detail the
properties of the electrical circuits generated by our procedure, especially the size of
the circuit model and its accuracy.

6.1 Information for the Construction of Electrical Circuit Models

In this section we discuss the minimal information needed for the construction of
an electrical circuit model. More precisely, we discuss how an electrical circuit
can be constructed from a given impedance function and how much information
is needed for this circuit to be unique. The choice to construct an electrical circuit
from an impedance function is motivated by the fact that characterization of an
electromagnetic component or system in terms of the impedance function is a very
general concept which has been formulated for many different models, most im-
portantly, electrical circuit models and field-theoretical models, and by the fact that
the impedance function is a physically well-defined quantity, i.e., it is in principle
also accessible in measurements.
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In general, the impedance function of an electrical circuit model is a function of
the complex frequency s and can be written in the form of a rational function

Z=
n
∑

k=1

1
sk − s

Z(k). (6.1)

The Z matrix stores all impedance functions in matrix form. Eq. (6.1) will be
discussed in more detail in Sect. 6.1.1. At present, it is important to note only
that the impedance function is fully characterized if the pole frequencies sk and the
residues of the poles Z(k) are known.

6.1.1 Eigenmode Analysis of Electrical Circuits

In Sect. 2.3 we introduced electrical circuits and expressed the impedance function
in terms of circuit matrices (2.33),

Z= −s AT
s






AL L−1 AT

L
︸ ︷︷ ︸

ÓL-1

+s A−1
R R−1 AT

R
︸ ︷︷ ︸

bG

+s2 AC CAT
C

︸ ︷︷ ︸

bC







−1

As . (6.2)

The As,AL ,AR,AC matrices are the node incidence matrices of the source, inductive,
resistive and capacitive networks respectively. They describe the topology of the
electrical circuit. The circuit element matrices L,R,C contain the circuit element
values. The circuit matrices cL-1, bG, bC have the following important properties

• They are real, symmetric and independent from s.

• They are positive (semi-) definite. More precisely, the dimensions of the
null spaces of the cL-1, bG, bC are equal to the dimensions of the null spaces
of AL ,AR,AC matrices. The null spaces of the node incidence matrices are
equal to the numbers of unconnected subgraphs of the inductive, resistive,
and capacitive networks respectively.

• For a simple electrical circuit without mutual inductances, the circuit matri-
ces are illustrated in Fig. 6.1

We are now going to apply the spectral theory derived in Chapter 5 in order to
obtain an explicit expression for the frequency-dependent impedance. Consider

only the inner part,
�

cL-1+s bG+s2
bC
�−1

. This part really is the resolvent form of a
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L1

C1

R1

I1

C
2

0 1

2 3

AT
s =

�

0 1 0
�

AT
L =

�

1 0 0
�

AT
R =

�

0 1 −1
�

AT
C =

�

−1 0 1
1 −1 0

�

cL-1 =





1
L1

0 0
0 0 0
0 0 0



 bG=





0 0 0
0 1

R1
− 1

R1

0 − 1
R1

1
R1



 bC=





C1+ C2 −C2 −C1
−C2 C2 0
−C1 0 C1





Figure 6.1.: Circuit matrices for exemplary electrical circuit

real symmetric quadratic matrix polynomial. Such polynomials are discussed in
detail in Sect. 5.1.5. In particular, we showed that the resolvent form can be
written in terms of eigenvectors Φk of the matrix polynomial as

�

cL-1+s bG+s2
bC
�−1
=

2n
∑

k=1

λk

sk − s
ΦkΦ

T
k . (6.3)

This representation of the impedance function already explains (6.1). In the fol-
lowing sections, we discuss in greater detail the spectral properties of this matrix
polynomial and develop a physical interpretation of its eigenvalues and eigenvec-
tors.

Eigenfrequencies

Let s be a (complex) eigenfrequency, let Φ be the corresponding eigenvector. In
Sect. 5.1.3, we showed that a real matrix polynomial has eigenvalues which are
either real or come in complex pairs. It follows that the eigenfrequencies of an
electrical circuit are either real or form complex conjugate pairs. Furthermore,
let Φ be an eigenmode with eigenfrequencies s. The real numbers l−1 = Φ†

cL-1Φ,
r−1 = Φ†

bGΦ, c = Φ†
bCΦ are all non-negative due to the positive semi-definiteness
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of the circuit matrices. From the matrix polynomial, the following relationship can
be established:

0= Φ†
�

cL-1+s bG+s2
bC
�

Φ= l−1 + sr−1 + s2c. (6.4)

This second order equation for the eigenfrequency is solved by

s = −
1

2rc
±
√

√ 1
4(rc)2

−
1
lc

. (6.5)

In general, only one of the two solutions is an eigenfrequency, [99]. The important
point, however, is that either solution for the (complex) eigenfrequency s has a
negative real part, ℜ(s) < 0. In particular, it follows that electrical circuits are
stable according to the analysis in Sect. 2.2.

Eigenmodes

In Sect. 2.3.3 we showed that the matrix polynomial acts on a space Cn which
describes the node potentials Φ. An eigenmode Φk associated to an eigenfrequency
sk describes the node potentials of an eigenmode, i.e., in a state of resonance. From
the node potentials, all information about edge voltages and edge currents can be
computed using the node incidence matrices and the constitutive equations.

The normalization of an eigenvector Φk is a priori arbitrary. For the formulation
of the resolvent form, an additional normalization coefficient λk is needed, see
(5.24). Let Φk,Φl be eigenmodes with corresponding eigenfrequencies sk, sl . Then

δklλ
−1
k = 〈Φk, bGΦl + 2sk

bCΦl〉= ΦT
k
bGΦl + 2skΦ

T
k
bCΦl . (6.6)

In order to rewrite the normalization in a more intuitive form, we reconsider the ex-
pressions for the resistive losses, (2.28), and the capacitive energy, (2.30). The total
Ohmic losses and the total capacitive energy can be decomposed into contributions
which are due to the eigenmodes,

Pkl = Φ
T
k
bGΦl (6.7)

EC ,kl = Φ
T
k
bCΦl . (6.8)
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With this definitions, the normalization can be expressed in terms of the Ohmic
losses Pkl and the change in capacitive energy sEC ,kl by

δklλ
−1
k = Pkl + 2sk EC ,kl . (6.9)

The unit of the normalization coefficient λ is accordingly given by [λ−1] = 1 V A.

Impedance Function

Using (5.26) to express the resolvent form in terms of eigenvectors, the impedance
function for an electrical circuit can be computed by

Z(s) = −s AT
s

�

cL-1+s bG+s2
bC
�−1

As = −s AT
s

�

2n
∑

k=1

λk

sk − s
ΦkΦ

T
k

�

As . (6.10)

Checking the units yields [Z] = [s][λ][Φ]2/[s] = 1 V/ A as required.

6.1.2 Constructing an Electrical Circuit from its Impedance

As discussed above, the impedance function is a good link between electrical cir-
cuit models and electromagnetic field models because it can be defined for both.
In this section, we are interested in whether a given impedance function can be
represented by an electrical circuit, if this electrical circuit is unique and how it can
be found. More precisely, we are interested in reconstructing an electrical circuit
from an impedance function of the form (6.10). In later sections, we will compute
the impedance function from a field-theoretical model and construct the electrical
circuit to reproduce the impedance.

Reconstructing an electrical circuit from its impedance function is a two-step
procedure. In the first step, the node voltage vectors Φk are recovered from the
impedance function. In the second step, the electrical circuit is reconstructed from
its node potential eigenvectors. In the following sections, we discuss the following
questions:

• Under what conditions can the circuit eigenmodes Φk be recovered from the
frequency-dependent impedance function? Mathematically, what conditions
have to be satisfied for the node incidence matrix As of the source network
to be invertible?
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• What conditions have to be satisfied for the set of eigenmodes to uniquely
describe an electrical circuit. More precisely, under what conditions does a
unique electrical circuit exist which has the given eigenmodes?

Inverting the As matrix

In this section we discuss necessary conditions for the As matrix to be invertible.
More precisely, we are interested in a right pseudo-inverse matrix A+s such that
As A+s = 1n. In this case, the resolvent form can be recovered from the impedance
function. When the resolvent form is known as a broad band function of frequency,
the eigenmodes can be obtained from the resolvent form1.

Consider an electrical circuit consisting of n + 1 nodes2. Furthermore, let m
denote the number of sources in the current source network. In general, the current
source network may contain loops,. The number of independent loops is given by c.
In this case, As is an m×n matrix. According to Thm. 2.4, the rank of the indicence
matrix is given by rank(As) = m− c and the nullity by dimker(As) = n−m+ c. It
follows that

• If (m− c)< n, dim ker(As)> 0 and a pseudo-inverse matrix A+s cannot exist.

• If (m− c) = n, dimker(As) = 0 and there exists a pseudo-inverse matrix A+s
such that As A+s = 1.

• If, in particular, m= n and c = 0, the As matrix is square and invertible, and
the pseudo-inverse is equal to the inverse matrix, A+s = A−1

s .

These results can be illustrated very intuitively on the level of electrical circuits.
First note that (n+ 1)− (m− c) is the number of connected subsets of the source
network. It follows that

• If (m−c)< n, there are at least two subsets of nodes which are not connected
by the source network. The potentials assigned to the nodes in different
subsets can all be offset relative to each other without altering the impedance
function. Conversely, it is not possible to retrieve unique node potentials
from the impedance function. This situation is depicted in Fig. 6.2a.

1 If the resolvent form is given as a matrix valued function of complex frequency, the eigenmodes
can be extracted using, e.g., the vector fitting method, [126]. In this work, the resolvent form
is constructed from explicitly computed eigenvectors and the eigenfrequencies and residues
already appear explicitly.

2 n is the number of independent node potentials as the potential of the ground node is zero by
definition.
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• If c > 0, the source network contains loops. Due to Kirchhoff’s voltage law,
Thm. 2.2, which states that all voltages along closed loops add up to zero,
some entries of the impedance function are linearly dependent.This situation
is depicted in Fig. 6.2b.

• If m = n and c = 0, the maximum number of independent voltages is deter-
mined and all linear dependencies are removed. The source network forms
a spanning tree for the electrical circuit. This situation is depicted in Fig.
6.2c.

I1

I2

0 1

2 3

As =
�

1 0 0
0 −1 1

�

(a) Unconnected source
network

I1

I 3

I2

0 1

2 3

As =





1 0 0
−1 1 0
0 −1 0





(b) Source network with
loops

I1

I2

I 3

0 1

2 3

As =





1 0 0
0 1 0
0 0 1





(c) Tree network

Figure 6.2.: Source network configurations

To sum up, the circuit eigenmodes Φk can be recovered from the impedance
function (6.10) if the source network comprises all nodes of the circuit. If a tree
network is chosen, inversion is particularly simple. A very convenient choice for
the source network is to define all voltages w.r.t the common ground node, i.e., all
ports start at the same node. In this case, As = 1n. This situation is depicted in Fig.
6.2c.
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Constructing an Electrical Circuit from its Eigenmodes

In the previous section we showed the requirements for the circuit eigenmodes Φk
to be recovered from the impedance function. The next step is to construct an
electrical circuit from a set of eigenmodes and eigenfrequencies. We divide our
approach in two steps

• In the first step, we use the circuit eigenmodes to construct the circuit ma-
trices R, cL-1, and bC.

• In the second step, we use the circuit matrices L̃, R̃, and L̃ to construct both
the topology of the electrical circuit and the element values in explicit form.

We begin with the first step: For an electrical circuit with n + 1 nodes, a set of
2n eigenmodes Φk with corresponding eigenfrequencies sk and normalization co-
efficients λk is given. We need to find real symmetric matrices L̃, R̃, and C̃, such
that

�

cL-1+s bG+s2
bC
�−1
=

2n
∑

k=1

λk

sk − s
ΦkΦ

T
k .

We know that for the resolvent form to take this form, the normalization condition
(5.24) has to be satisfied. Denoting by Φ the matrix whose k-th column is the eigen-
mode Φk and by S the diagonal matrix of eigenfrequencies sk, this normalization
condition takes the form

�

Φ
ΦS

�T �
bG bC
bC 0

�

�

Φ
ΦS

�

= Λ−1

For most generalized eigenvalue problems, the coefficient matrices, i.e., cL-1, bG and
bC, are known and the spectrum has to be found. In contrary, the spectrum is given
here and the corresponding generalized eigenvalue problem has to be specified.
In this case, the normalization condition really is a linear system of equations for
the coefficient matrices bG and bC. It follows that the matrices bG and bC can be
constructed from the circuit eigenmodes by solving a linear system of equations.
Pulling all known information to the right-hand side, an explicit expression for the
circuit matrices can be formulated,

�

bG bC
bC 0

�

=
�

Φ
ΦS

�−T

Λ−1
�

Φ
ΦS

�−1

. (6.11)
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Having computed two coefficient matrices, bG and bC, we have to determine the
missing coefficient matrix, cL-1 in the next step. To do so, we exploit the left identity
from (5.11). In terms of the coefficient matrices, the first companion matrix C1 is
given by

C1 =

�

0 1

− bC
−1
cL-1 − bC

−1
bG

�

.

As the bC matrix is already known from the previous step, the cL-1 matrix can be
computed by solving the linear system of equations (5.11). Using the expression
for the companion matrix given above and pulling all known information to the
right hand side results in

�

0 1

− bC
−1
cL-1 − bC

−1
bG

�

=
�

Φ
ΦS

�

S
�

Φ
ΦS

�−1

.

The unknown quantity, cL-1 is in the lower left block of the matrix. It can be ex-
tracted from the large matrix by

cL-1 =
�

0 − bC
�

�

Φ
ΦS

�

S
�

Φ
ΦS

�−1 � 0
1

�

. (6.12)

In summary, if a full set of 2n eigenfrequencies and eigenmodes with corre-
sponding normalization coefficients λ are known, circuit matrices for an electrical
circuit model with the correct spectral properties can be computed. In particular,
the circuit matrices are unique.

The final step towards an electrical circuit model is the explicit computation of
topology and element values from the circuit matrices. By definition in (2.27),
the circuit matrices are products of incidence matrices, describing the topologies
of the subcircuits, and the element matrices, cL-1 = AL L−1 AT

L , bG = AR R−1 AT
R, and

bC = AC CA−T
C . Consider first the resistive and capacitive subcircuits: The matrices

R and C are diagonal. The circuit matrices bG and bC then take a simple form, [127],
which is depicted exemplarily in Fig. 6.1:

• If bCkl = 0 for k 6= l, the k-th and the l-th node are not connected by a
capacitor.

• If bCkl 6= 0 for k 6= l, the k-th and the l-th node are connected by a capacitor
with capacitance − bCkl .
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• The diagonal element bCkk contains the sum of all capacitances which are
connected to the k-th node, bCkk = Ck0+

∑n
l=1 Ckl . It follows that if

∑n
l=1
bCkl 6=

0, the k-th node is connected to the ground node by a capacitor with this
capacitance.

• The same structure is also valid for the resistive circuit matrix bG.

From this structure, both the topology and the element values of the capacitive and
resistive subcircuits can be read.

Constructing the inductive subcircuit from the cL-1 matrix is considerably more
complex and the inductive subcircuit is usually not unique. The higher complexity
is due to mutual inductances, i.e., the L matrix is dense. The cL-1 matrix there-
fore has a different structure than the bG and the bC matrices and the inductance
matrix L cannot be read from cL-1 by the above procedure. In order to extract
the L matrix from the relationship cL-1 = AL L−1 AT

L , (2.27), we have to construct a
pseudo-inverse A+L such that A+L AL = 1 instead. This pseudo-inverse exists if and
only if the inductive subcircuit does not contain loops. If the inductive subcircuit
contains loops, the definition of the inductive subcircuit is possible, but it is not
unique. In practice, the topology of the inductive subcircuit, i.e., the AL matrix,
is determined by the geometric structure of conductors. The following convention
leads to a well-defined, unique inductive subcircuit: Two nodes which are located
on disjoint conductors cannot be connected by an inductance. Two nodes which
are located on the same conductor are by default connected by an inductance. If
there are more than two nodes on the same conductor, the inductive subcircuit can
be adapted to the requirements of the user as long as it does not contain loops.
With this convention, the explicit formula for the inductance matrix L reads

L=
�

A+L
cL-1(A+L )

T
�−1

. (6.13)

Last but not least, we emphasize the different conditions for the existence of
pseudo-inverses for the As and the AL matrices: In order to compute the circuit
eigenmodes from the impedance function, we need a right pseudo-inverse for the
As matrix, i.e., As A+s = 1. This pseudo-inverse exists if the graph described by As
is spanning, however, it may contain loops. In order to compute the L matrix from
the cL-1 matrix, we need a left pseudo-inverse for the AL matrix, i.e., A+L AL = 1. This
pseudo-inverse exists if the graph described by AL does not contain loops, however,
it need not be spanning.
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6.1.3 Lossless Electrical Circuits

An electrical circuit without resistive circuit elements is called a lossless electrical
circuit. In a lossless electrical circuit, bG= 0. In general, particularly at low frequen-
cies, a lossless electrical circuit is a bad model for a real electromagnetic system.
However, it can be a sufficiently accurate model at higher frequencies, when the
impedance is dominated by inductive rather than resistive effects. The spectral
properties of a lossless electrical circuit cannot be read directly from the spectral
properties of a general electrical circuit. The missing linear term transforms the
quadratic matrix polynomial into a linear matrix polynomial in s2, i.e., the struc-
ture of the matrix polynomial is changed. An eigenmode Φ with eigenvalue s of a
lossless electrical circuit satisfies

(cL-1+s2
bC)Φ= 0. (6.14)

The eigenvalues of this polynomial are all real. If Φ is an eigenvector with eigen-
value s2, it follows

0= Φ†
�

L̃+ s2
bC
�

Φ= l−1 + s2c, (6.15)

i.e., s = ±i/
p

lc, the eigenfrequencies are purely imaginary. In time domain, these
solutions correspond to undamped oscillations. A lossless electrical circuit is not
stable according to the definition in Sect. 2.2. However, as the solution remains
bounded for all times, it is called weakly stable, [99].

The normalization condition (5.21) for lossless electrical circuits reads

δklλ
−1
k = Φ

T
k
bCΦl = Φ

T
k Ql = EC ,kl . (6.16)

Note that the unit of λ differs from the unit of the normalization constant of lossy
electrical circuits, (6.6). For lossless electrical circuits, [λ−1] = 1 V A s. With this
normalization, the resolvent form for a lossless electrical circuit is given by

�

cL-1+s2
bC
�−1
=

n
∑

k=1

λk

s2
k − s2

ΦkΦ
T
k . (6.17)

This expression differs from (6.3) in the quadratic term in frequency and in the
lower number of modes. The impedance function of a lossless electrical circuit can
be written as
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Z(s) = −s AT
s

�

n
∑

k=1

λk

s2
k − s2

ΦkΦ
T
k

�

As . (6.18)

Checking the units yields [Z] = [s][λ][Φ]2/[s]2 = 1 V/ A as required. The circuit
matrices cL-1 and bC can be computed from the matrix of eigenmodes Φ, the diagonal
matrix of eigenfrequencies S, and the diagonal matrix of normalization coefficients
Λ by

bC= Φ−TΛΦ−1
cL-1 = Φ−TΛS2Φ−1. (6.19)

In order to construct the explicit form of the electrical circuit from the circuit ma-
trices, the procedure from Sect. 6.1.2 can be reused.

6.2 The Physical Model behind Electrical Circuits

In the previous section, we highlighted the crucial importance of circuit eigen-
modes for the analysis of electrical circuits. The eigenmodes completely specify
the resolvent form and, in this way, the impedance function. In this section, we
develop a field-theoretical model which is equivalent to electrical circuit theory on
a 3D basis. This physical model will be shown to be equal to Darwin’s model.
We then discuss the properties of the impedance function in Darwin’s model. The
main result of this section will be an expression of the impedance function in terms
of eigenmodes of Darwin’s model, i.e., 3D field eigenmodes. The 3D eigenmodes
of Darwin’s model will be shown to have very similar properties to the discrete
eigenmodes of electrical circuits.

6.2.1 Equations of Motion

In general, electromagnetism is governed by Maxwell’s equations. The full set of
Maxwell’s equations exhibits properties which cannot be reproduced by electrical
circuits, wave propagation and retardation, [37, 64]. In this section, we derive
a field-theoretical model which exactly describes the electromagnetic properties
incorporated in electrical circuit theory. This model is exactly Darwin’s model from
Sect. 3.4.3.
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Constitutive Equations

The first set of equations will arise from the generalization of the constitutive equa-
tions for the circuit elements, shown in Sect. 2.1.1. We begin our investigation
with the description of conductors. On the level of electrical circuits, a conductor
is described by a resistor, an inductor or a combination of both. More generally, a
conductor is described by specifying a conduction current as function of an applied
voltage. On the level of electromagnetic fields, this corresponds to specifying a
current density as function of an applied electric field. Such a relation is given by
(3.8),

~jσ = σ~E.

The subscript σ indicates that the conduction current inside a conductor will only
be part of the total current. In order to make the connection between circuits and
fields more evident, we use (3.23) to rewrite the electromagnetic field in terms of
the scalar potential φ and the vector potential ~A,

−∇φ =
~jσ
σ
+ ∂t ~A. (6.20)

Identifying the scalar potential Φ as the field-theoretical equivalent to the vector of
node potentials and comparing this equation with (2.20) and (2.21), we can make
the following identifications:

• For low frequencies, i.e. σ∂t ~A� ~jσ, (6.20) describes an Ohmic resistor.

• For high frequencies, i.e. ~jσ� σ∂t ~A, (6.20) describes an inductor.

• For frequencies between the two limits, (6.20) describes a series connection
of inductor and resistor.

In order to complete the derivation, the defining equations for the vector potential
~A have to be specified. In particular, a gauge has to be chosen in order to render
the potentials unique. As discussed in Sect. 4.4.1, each choice of gauge changes
the definition of partial inductance. In order to comply with the definition used in
the PEEC method, the following definition for the vector potential is chosen

∇×
�

1
µ
∇× ~A

�

+ ε∇∂tφ = ~jσ (6.21)

∇ ·
�

ε~A
�

+ ε2µ∂tφ = 0. (6.22)
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Removing the complication stemming from considering inhomogeneous electric
and magnetic material distributions considerably simplifies the interpretation:

• Eq. (6.21) is essentially Ampere’s law, which is written in terms of the vector
potential. For spatially homogeneous materials, it can be simplified to read
∆~A= −µ~j, which is the well-established expression for the vector potential
used in the PEEC method, (4.19).

• Eq. (6.22) is the gauge fixing condition. For spatially homogeneous materi-
als, it reduces to the well known Lorenz gauge [34],∇· ~A+εµ∂tφ = 0. There
are many possible generalizations of the Lorenz gauge for dielectric and per-
meable materials3. We have chosen Eq. (6.22) because it will eventually
lead to a symmetric system of equations of motion, even in the presence of
inhomogeneous dielectric and permeable materials (Sect. 6.2.2).

• Last but not least, we emphasize that (6.21) is a non-retarded expression
for the vector potential. As desired, the physical model does not describe
retardation and wave propagation.

The formulation (6.21) for Ampere’s law already allows for current densities
with non-zero divergence. At first sight, current densities with non-zero divergence
seem to be incompatible with Kirchhoff’s current law, (2.18). However, remember
that in Sect. 2.1.1 we showed that already on the level of electrical circuits, Kirch-
hoff’s current law only holds when the conduction currents are supplemented by
displacement currents through capacitors in the definition of the total current. Also
on the level of field equations, the conduction currents have to be supplemented by
displacement currents to restore current continuity. In practice, there are two dif-
ferent situations in which displacement currents appear: First, when the terminals
of a current source are connected to two disjoint conductors, there is no conductive
current return path and the current must return by displacement currents. In this
case, the two conductors carry non-zero total charge. Second, at high frequencies
the impedance of a current return path by displacement currents can be lower than
the impedance of a conductive return path, even if such a conductive return path
exists. In this case, the total charge of the conductor is zero at all times, but there
are local fluctuations in the charge density. At the frequency when the impedances
of the two return paths are equal, the system enters a state of resonance.

To finalize the derivation, we start with an expression for the displacement cur-
rent in terms of the electric field,

3 See, e.g., [128] or [129] for a discussion.
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~jD = ∂t ~Dc = ∂t(−ε∇φ). (6.23)

Instead of the Maxwell displacement current, ~jD = ∂t ~D, we again use the reduced
version introduced in Sect. 3.4.3 about Darwin’s model. Inserting this expression
into the existing equations of motion (6.21) and (6.22) yields

∇ · ε∇φ = −ρ =
∫ t

∞
∇ · ~jσdt. (6.24)

To sum up, we identify

~jD = (−ε)∂t(∇φ) (6.25)

as the 3D equivalent of capacitor currents, Ic = C dUc
dt .

Kirchhoff’s Laws

For the complete description of electrical circuits, we need the constitutive equa-
tions for the circuit elements and Kirchhoff’s equations. In this section, we gen-
eralize Kirchhoff’s equations to 3D electromagnetic systems and show that the
equations of motion satisfy these generalized Kirchhoff’s equations.

Kirchhoff’s current law, (2.18), is a continuity equation for the electric current.
The continuity equation can be generalized to the 3D domain. Defining the to-
tal current as the sum of conductive currents ~jσ and displacement current ~jD, this
continuity equation directly follows from (6.24). In circuit and field domain re-
spectively, Kirchhoff’s current law reads

AI= A(IR+ IL + IC) = 0 ⇔ ∇· ~j =∇ ·
�

~jσ + ~jD
�

= 0. (6.26)

Kirchhoff’s voltage law, (2.19), is already satisfied implicitely by using the node
potential approach. We have already identified the node potential vector with the
scalar potential. Further identifying the ”algebraic sum of edge voltages” by line
integrals of the ∇φ field yields

0= BV= BAT Φ ⇔ 0=

∮

~Ec · d~s =
∮

−∇φ · d~s (6.27)

because a loop integral of a gradient field is always zero.
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Current Sources

The equations of motion (6.21), (6.22) and (6.24) were constructed as generaliza-
tions of electrical circuit theory to the 3D domain. What remains to be modeled
are the ”external interfaces” of the circuit, i.e., current sources to excite the elec-
tromagnetic system and voltage probes to measure the response.

On the level of electrical circuits, a current source is a device which extracts
current from one node and injects it at another node of the electrical circuit. In
other words, the current source can be seen as a violation of the continuity equation
(2.18) for the passive subcircuit, i.e., the subcircuit consisting of only passive circuit
elements:

AL IL +AR IR+AC IC = −As Is. (6.28)

In the 3D domain, we therefore model lumped current sources accordingly as an
inhomogeneity of the continuity equation for the conduction and displacement cur-
rents, [130]:

∇ · ~j =∇ · (~jσ + ~jD)≡ −∇ · ~js = js
�

δ(3)(x − x1)−δ(3)(x − x0)
�

. (6.29)

In Eq. (6.29), the points x1 and x0 are the 3D equivalents to the terminal nodes of
the current source. δ(3)(x − x ′) is the three-dimensional Dirac delta function.

In order to make the definition compatible with the already established system
of equations, we introduce an auxiliary field g such that

~js = ε∇g. (6.30)

Comparison with (6.29) shows that g is the solution of a Poisson equation

∇ · (ε∇g) =∇ · ~js = − js
�

δ(3)(x − x1)−δ(3)(x − x0)
�

. (6.31)

With this definition we can incorporate current sources into the equations of motion
(6.21), (6.22), and (6.24):

∇×
�

1
µ
∇× ~A

�

+ ε∇∂tφ = ~jσ + ε∇g (6.32)

∇ ·
�

ε~A
�

+ ε2µ∂tφ = ε
2µg. (6.33)
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While the derivation is rather straightforward, the ansatz (6.30) is only one possi-
ble ansatz to satisfy (6.29) and needs some further motivation. We will therefore
derive it in a different way. For simplicity, let us work under the assumption of
homogeneous materials where Darwin’s equations take the form

∆~A= −µ~j = −µσ~E −µ~js ∇ · ~A+ εµ∂tφ = 0.

In the physical reality, the source current has to be treated on equal footing with
the conduction currents, i.e., they both contribute to the vector potential ~A. In
order to study the impact of the current source, we decompose the vector potential
into two contributions, ~A= ~Aσ+ ~As, stemming from the conduction current and the
source current respectively. The equations of motion can similarly be decomposed
into two systems of equations:

∆~Aσ = −µ~jσ ∆~As = −µ~js

∇ · ~Aσ + εµ∂tφ = εµg ∇ · ~As + εµg = 0.
(6.34)

From this system of equations, the following can be concluded:

• The system of equations on the right hand side can be solved immediately
for the unknowns ~As and g. This definition of g agrees with (6.31).

• The system of equations on the left hand side depends on As and g in
two ways: First, there is an explicit dependence on g. Second, there is
a hidden dependence on As in the definition of the conductive current,
~jσ = σ~E = σ

�

−∇φ − ∂t ~As

�

− σ∂t ~As. Apart from the last term, (6.34) is
identical to (6.32) and (6.33). The additional term can be interpreted as a
mutual inductance between the current source and the conductor currents.

In classical electrical circuit theory and using ideal current sources, the self- and
mutual inductances of current sources are not included4. Also removing them from
our 3D model for electromagnetic circuit exactly yields (6.32) and (6.33).

4 Even though they physically exist. Neglecting the inductances of current sources is an implicit
approximation in the framework of electrical circuit theory. The approximation is mostly justi-
fied because in any meaningful measurement setup, the (physical) lengths of the current sources
are short compared to the (physical) lengths of the conductors.

115

www.Techbooksyard.com



www.manaraa.com

Voltage Probes

For the definition of voltage probes, we recall the previous identification of the
node potential vector with the scalar potential. On the level of electrical circuits,
a voltage probe measures potential differences of the node potentials of different
nodes. For a voltage probe between the k-th and l-th node, the voltage is thus given
by

V = Φ(k)−Φ(l) =
n
∑

i=1

Φ(i)(δik −δil). (6.35)

Φ(i) is the i-th component of the node potential vector, δi j is the discrete Kronecker
delta. Similarly, on the level of electromagnetic fields, a voltage probes measures
potential differences of the scalar potential between different points. For a voltage
probe between the xk and x l , the voltage is thus given by

V = φ(xk)−φ(x l) =

∫

φ(x ′)(δ(3)(x ′ − xk)−δ(3)(x ′ − x l))d
3 x

= δT
kφ −δ

T
l φ.

(6.36)

δ(3)(x ′ − x) is the three-dimensional Dirac delta function. The last equality de-
fines a short-hand notation for the convolution of the scalar potential and the delta
function, which we will frequently use in following sections.

6.2.2 Eigenmode Analysis

In this section, we perform a spectral analysis of the 3D model for electrical circuits,
(6.32) and (6.33). We will show that the 3D eigenmodes and eigenfrequencies have
very similar properties to the circuit eigenmodes and eigenfrequencies of electrical
circuits. Furthermore, we will derive an expression for the impedance function in
terms of 3D eigenmodes which is very similar to the expression for the impedance
in terms of circuit eigenmodes, (6.10).

In order to perform the spectral analysis, the equations of motion have to be
transformed into frequency domain. This is possible by means of the Fourier trans-
form (Sect. 2.2). In the complex frequency s, the equations of motion read

∇×
�

1
µ
∇× ~A

�

+ sε∇φ = ~jσ + ε∇g (6.37)

∇ ·
�

ε~A
�

+ sε2µφ = ε2µg. (6.38)
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Symmetrization

The properties of real symmetric polynomial eigenvalue problems (Sect. 5.1.3 and
Sect. 5.1.5) greatly simplify the spectral analysis. Furthermore, numerical algo-
rithms for the solution of real symmetric (or, more generally, hermitian) eigen-
value problems are in general better conditioned than numerical algorithms for
non-hermitian eigenvalue problems. The equations of motion in frequency do-
main, (6.37) and (6.38) can be symmetrized by changing variables,

��

∇ · ε∇ 0
0 ∇×µ−1∇×

�

+ s
�

0 ∇ · ε
−ε∇ σ

�

+ s2
�

−ε2µ 0
0 0

��

·
�

sφ
~E

�

=
�

−ε2µs2 g
−εs∇g

�

.
(6.39)

With this change of variables, Darwin’s model is described by a real symmetric
matrix polynomial. In the next sections, we apply results from Sect. 5.1.5 in order
to study the spectral properties of Darwin’s model.

Eigenfrequencies

According to the investigation in Sect. 5.1.3, all eigenvalues appear in complex
conjugate pairs. It remains to check that all eigenvalues are located in the left
complex half plane to ensure the stability of the physical model. Assume that
�

φ, ~E
�

is an eigenmode with complex eigenfrequency s. Inserting into the equations
of motion yields

0 = φ†
�

∇ · ε~E +∇ · ε∇φ − ε2µs2φ
�

= −ε|∇φ|2 − s2ε2µ|φ|2 − (∇φ)† ε~E

0 = ~E†
�

∇×
�

1
µ∇× ~E

�

+ sσ~E − s2∇φ
�

= 1
µ |∇× ~E|

2 + sσ|E |2 − s2
�

ε~E
�†∇φ.

which can be combined to yield

0=
§

1
µ
|∇× ~E|2 + ε2µ|s|4|φ|2

ª

+ s
�

σ|~E|2
	

+ s2
�

ε|∇φ|2
	

. (6.40)

Analyzing (6.40) in the same way as (6.4) shows that all eigenfrequencies are
indeed in the left half plane, ℜ(s)< 0. The locations of the eigenfrequencies in the
complex plane thus agree with the locations of the eigenfrequencies of an electrical
circuit model.
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Eigenmodes

The normalization of the eigenvectors is a priori arbitrary. In order to express the
resolvent form in terms of eigenmodes, a normalization matrix Λ is needed. Denot-
ing by (φi , ~Ei) the eigenmode with eigenfrequency si and inserting the coefficient
matrices from (6.39) into the normalization condition (5.24) yields

δklλ
−1
k = ~E

T
kσ
~El − 2skφ

T
k∇ε∇φl . (6.41)

In the discussion of the normalization condition for circuit eigenmodes, (6.9), the
normalization was expressed in terms of energy related quantities, the Ohmic losses
and the change in capacitive energy. The same considerations can also be applied
to (6.41). Again consider a field distribution,

�

φ(x), ~E(x)
�

=
N
∑

k=1

ak

�

φk(x), ~E(x)
�

.

The Ohmic loss rate according to (3.39) and the capacitive energy according to
(3.40) are given by

P =
N
∑

k,l=1

akal Pkl Pkl =

∫

~Ek(x) (σ~El(x))
︸ ︷︷ ︸

~jl (x)

d3 x (6.42)

EC =
N
∑

k,l=1

akal EC ,kl EC ,kl =

∫

φk(x) (−∇ · ε∇φl)
︸ ︷︷ ︸

ρl

d3 x . (6.43)

and ~jσ and ρ are the Ohmic current and the space charge density. With these
definitions, the normalization condition (6.41) can be reformulated

δklλ
−1
k =

∫

~ET
k
~jk + 2skφ

T
kρld

3 x = Pkl + 2sk EC ,kl . (6.44)

This normalization condition is equivalent to a similar normalization condition for
the circuit eigenmodes of electrical circuits, (6.9).
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Impedance Function

On the level of electrical circuits, the impedance function is computed by exciting
the system with a time-harmonic current source and computing the voltages or,
equivalently, the potential differences. In Sect. 6.2.1 we generalized the definition
of current sources for electrical circuits to the 3D domain.

According to the derivation in Sect. 6.2.1, let the current source be described by
the scalar field g, defined by (6.31). The electromagnetic fields can be computed
using the equations of motion (6.39),

�

sφ
~E

�

=
��

∇ · ε∇ 0
0 ∇×µ−1∇×

�

+ s
�

0 ∇ · ε
−ε∇ σ

�

+ s2
�

−ε2µ 0
0 0

��−1

·
�

−ε2µs2 g
−εs∇g

�

.

The resolvent form can be expressed in terms of field eigenmodes (φk, ~Ek) using
(5.26). The scalar potential can then be written

φ =
2N
∑

k=1

λk

sk − s

�

−ε2µsksφT
k g + (∇ · ε~Ek)

T g
�

φk,

which can be reformulated using the equations of motion,

φ = s
2N
∑

k=1

λk

sk − s

�

φT
k∇ · (ε∇g)

�

φk.

In order to obtain the final form, we recall the definition of the g field, ∇· (ε∇g) =
− js

�

δ(3)(x − x1)−δ(3)(x − x0)
�

= − jsδ. It follows

φ = s js

2N
∑

k=1

λk

sk − s

�

−φT
kδ
�

φk.

In order to define voltages, we have to use the voltage probes according to Sect.
6.2.1. We directly proceed to the definition of the impedance matrix. Let the k-th
current source be described by gk where ∇ · ε∇gk = − js,k(δ3(x − xk,1) − δ3(x −
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xk,0) = − js,kδk. The k-th voltage probe measures the voltage drop produced by the
k-th source current and is accordingly described by δk, i.e., δT

kφ = φ(xk,1)−φ(xk,0).
The voltage drop along the l-th voltage probe due to the current in the k-th current
source is thus given by

Zkl = −s
2M
∑

i=1

λk

s− si

�

δT
l φi

� �

φT
i δk

�

.

Denoting by δ the matrix whose columns are given by the δk functions, the
impedance matrix can be written as

Z= −sδT

�

2N
∑

i=1

λ

s− si
φiφ

T
i

�

δ. (6.45)

This equation is very similar to the equivalent expression for the impedance func-
tion of electrical circuits, (6.10).

6.2.3 Lossless systems

In Sect. 6.1.3 we introduced lossless electrical circuits as an approximation of
electrical circuit theory. It is also possible to define a lossless system on the level
of Darwin’s model. In this case, all conductivities are set to infinity, σ =∞. In
practice, lossless conductors are modeled by a perfectly conducting (PEC) boundary
condition ~E × ~n = 0 instead of a conductivity. For the lossless Darwin model, a
different change of variables than in (6.39) leads to a symmetric matrix polynomial
with lower order,

��

∇ · ε∇ 0
0 0

�

+ s2
�

−ε2µ ∇ · ε
−ε∇ ∇×µ−1∇×

��

�

s2φ
~E

�

=
�

−ε2µs3 g
−εs3∇g

�

.

(6.46)
It can be shown that the eigenvalues s2 of this system of equations are real and neg-
ative, i.e., the eigenfrequencies are purely imaginary. The location of the eigenfre-
quencies in the complex plane thus agree with the locations of the eigenfrequencies
of a lossless electrical circuit model.

Due to the lower order of the polynomial eigenvalue problem, the normaliza-
tion condition for the eigenmodes of lossless electrical circuits has a simpler form
than the general expression (6.41). Denoting by (φi , ~Ei) the eigenmode with eigen-
frequency si and inserting the coefficient matrices for the lossless Darwin model,
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(6.46), into the normalization condition for linear eigenvalue problems, (5.21),
can be shown to yield

λ−1
k δkl = −φT

k∇ε∇φl = φ
T
kρl = EC ,kl . (6.47)

This normalization condition is equivalent to a similar normalization condition for
the circuit eigenmodes of lossless electrical circuits, (6.16). With this normaliza-
tion, the impedance function is given by

Z= −sδT

�

n
∑

k=1

λk

s2
k − s2

φkφ
T
k

�

δ. (6.48)

.

6.2.4 Connection to Ampere’s law

In the previous section, we used the Lorenz gauge to derive an expression of the
vector potential (and, hence, the magnetic field) which depends only on the con-
duction current. Combining (6.37) and (6.38) yields

∇×
1
µ
∇× ~A− ε∇

1
ε2µ
∇ · (ε~A) = −

1
µ
∆~A= ~jσ,

where we assumed homogeneous materials in the first identity. This equation has
an explicit solution in terms of Green’s functions, (3.31),

~A= −
µ

4π

∫

~jσ(x ′)
|x − x ′|

d3 x ′.

If the conduction current is solenoidal, ∇ · ~jσ = 0, it has been shown that the
magnetic field ~B = ∇× ~A is consistent with Ampere’s law, [131]. More precisely,
applying Ampere’s law yields∇× ~B =∇×∇× ~A= µ~jσ. If, however, the conduction
current is not solenoidal, it has been shown, [131], that

∇× ~B =∇×∇× ~A= µ~jσ +µ∇
1

4π

∫

∇ · ~jσ(x ′)
|x − x ′|

d3 x ′

︸ ︷︷ ︸

g′

. (6.49)
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In order to render the magnetic field constistent with Ampere’s law, the current
path is closed by a genric current return path ~jreturn = ∇g ′, [132]. Further using
the Green function identity (3.31) yields

∆g ′ =∇ · ~jσ = −∇ · ~js.

The definition of g ′ therefore agrees with the definition (6.31) for the auxiliary
g field. In particular, our formulation for inductance-free current sources, (6.30),
agrees with the generic current return path appearing in (6.49).

6.2.5 Connection to the PEEC Method

The PEEC method (Sect. 4.4) is the state-of-the-art method for the construction
of electrical circuit models. In this section, we explore similarities and differences
between our method and the PEEC method.

Both the PEEC method and our method start from a field-theoretical (3D) model
for an electromagnetic system. Both methods use Darwin’s model as the field-
theoretical equivalent to electrical circuit theory. There is a difference in the
modeling of current sources, however: In the PEEC method, current sources are
included on the level of electrical circuits, i.e., after the discretization process. In
the physical system underlying our method, current sources are modeled in the
3D domain and included in the discretization process. As such, the models for
current sources cannot be readily compared. However, when a discretized PEEC
model including current sources is transformed back into a continuous system of
integro-differential equations, i.e., the PEEC discretization process is reversed, a
formulation to include lumped current sources in a 3D model. This process is
explained in detail in Sect. 4.4.5. It turns out that the two formulations are equiv-
alent. Mathematically, the equations of motion used in our method, (6.32) and
(6.33), are equal to the equations of motion used in the PEEC method, (4.30).

The PEEC method starts from the equations of motion and discretizes them in
such a way that the result has the form of an electrical circuit. The discretized
equations of motion can be solved to compute, e.g., transfer functions and eigen-
modes. On the other hand, our method starts from eigenmodes of the equations of
motion and constructs the electrical circuit from the eigenmodes. In this thesis, the
eigenmodes are computed numerically using the FEM. However, it is also possible
to use, e.g., analytical expression for the eigenmodes (if available) or even use the
PEEC method to compute the eigenmodes. While the electrical circuits constructed
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by the PEEC method are usually very large5, our method aims at constructing very
compact equivalent circuit with as few circuit elements as possible to reach suffi-
cient accuracy in the frequency range of interest. In short, the PEEC method is a
discretization scheme which yields large electrical circuits, our method is a model
order reduction scheme which yields very compact electrical circuit models.

So far, the PEEC method was the only method available for the numerical com-
putation of partial inductances, which have proven very useful for the description
of multiconductor systems. Our formulation opens a different path: Starting from
the equations of motion in differential form, (6.32)-(6.33), the discretization pro-
cess can be performed with essentially all methods suitable for the discretization
of systems of partial differential equations. In particular, instead of a discretiza-
tion in terms of integral equations, e.g., the PEEC method, the system of equations
can also be discretized directly from the differential equations using, e.g., the FEM
or the Finite Integration Technique. Compared with the PEEC discretization, our
approach has the following advantages:

• The FEM can be implemented with a wide range of different mesh types.
In particular, it can handle unstructred, tetrahedral meshes which offer a
great flexibility in the description of complex geometries. Furthermore,
the FEM can be extended in a straightforward way6 to handle curvilinear
meshes. Using higher order ansatz functions on the same mesh leads to
faster convergence. In comparison, the standard PEEC method was defined
for rectangular, orthonormal meshes. Generalizing the PEEC method to dif-
ferent mesh types is possible, [133, 134], but requires considerably more
implementational and computational effort. To our knowledge, there is no
extension of the PEEC method to higher order ansatz functions.

• The FEM can handle complex, spatially inhomogeneous material distribu-
tions. Most importantly, permeable and dielectric materials can be described
without additional computational effort. In the PEEC method, such ma-
terials have to be modeled by additional degrees of freedom because of the
lack of Green’s functions for inhomogeneous material distributions (see Sect.
4.4.4).

• The PEEC method can describe systems with lots of vacuum space very ef-
ficiently because there are no degrees of freedom assigned to the vacuum.

5 The number of circuit elements is equal to the number of discretization elements. Therefore,
already a large number of elements is needed to achieve moderate accuracy.

6 By ’straightforward’ we indicate that the basic structure of the discretization procedure remains
the same. Added complexity arises only from increased book-keeping due to the higher number
of degrees of freedom.
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The FEM, on the other hand, operators on a mesh filling all space, leading
to a much higher number of degrees of freedom in this case.

6.3 The Connection between Electrical Circuits and Electromagnetic Fields

6.3.1 Connections between Circuit Quantities and Field Quantities

In the previous sections, we discussed electrical circuits and their field-theoretical
equivalent, Darwin’s model. We analyzed the spectral properties of both models
in order to separate relevant physical processes (i.e., eigenmodes in the frequency
range of interest) from irrelevant physical processes (i.e., eigenmodes far outside
the frequency range of interest which contribute only weakly). We then defined
a special transfer function, the impedance, for both models and expressed it in
terms of eigenmodes. We showed that the impedance can be written as a rational
function with poles given by the eigenfrequencies in the spectrum.

In this section, we discuss similarities between the two models. We highlight
equivalent expressions within the two models and identify field quantities with
circuit quantities:

• The current density is identfied with the vector of edge currents and the
charge density is identified with the vector of node charges,

�

~j,ρ
�

⇔ (I,Q) .

• The scalar potential is identified with the vector of node potentials,

φ(x) ⇔ Φ.

• The divergence operator is identified with the node incidence matrix; the
gradient operator is identified with its transpose,

(div=∇·,∇) ⇔
�

A,−AT
�

.

The minus sign stems from the fact that the nabla operator has to be seen as
the negative transpose of the divergence operator. This can be understood
from the result 〈 ~v ,∇ f 〉=

∫

~v T∇ f d3 x = −
∫

(∇ · ~v ) f d3 x = −〈∇ · ~v , f 〉.
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• It follows from the previous identfication that the longitudinal part of the
electric field is identified with the vector of edge voltages,

~EL = −∇φ ⇔ V= ATφ.

• The set of path integrals around closed loops is identified with the funda-
mental loop matrix7,

∮

γ

d~s ⇔ B .

• The three-dimensional Dirac delta function is identified with the discrete
Kronecker delta,

δ(3)(xk − x l) ⇔ δkl .

The above identifications can all be understood very intuitively. Already with this
set of equations, we arrive at the following equivalences:

• The constitutive equation for the current, ~j = −σ∂t ~A− σ∇φ is identified
with the voltage-current relationship of resistors and inductors,

−∇φ =
~j
σ
+ ∂t ~A ⇔ AT Φ= RI+L

d I
dt

.

• Coulomb’s law is identified with the charge-voltage relationship of a capaci-
tor,

ρ = −∇ · (ε∇φ) ⇔ Q= bCΦ.

• The continuity equation (3.18) is identified with Kirchhoffs current law
(2.31),

∇ · ~jσ +∇ · ~jD = −∇ · ~js ⇔ AI+∂t Q= −AIs .

7 Recall that multiplying a vector by the fundamental loop matrix is equivalent to forming alge-
braic sums of closed loops in the corresponding graph.
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• The conservativeness of the gradient field ∇φ is identified with Kirchhoff’s
voltage law,

∮

γ

∇φd~s = 0 ⇔ BV= BAT Φ= 0.

• A 3D voltage probe is identified with the discrete voltage probe,

V = δTφ ⇔ V= As Φ.

The similarities between circuits and field theory can be carried even further when
the eigenmodes of the respective systems are compared:

• Eigenfrequencies of Darwin’s model are identified with the eigenfrequencies
of electrical circuits. In Sect. 6.2.2 and Sect. 6.1.1 respectively, we showed
that the eigenfrequencies of Darwin’s model and electrical circuits both ap-
pear in complex conjugate pairs in the complex half plane with negative real
part.

• For both the lossless Darwin system and lossless electrical circuits, the eigen-
frequencies are purely imaginary.

• Eigenmodes φ of Darwin’s model are identified with eigenmodes Φ of elec-
trical circuits. The normalization conditions used in this work, (6.44) and
(6.9) respectively, read

Pkl + 2sk EC ,kl = λ
−1
k δkl ⇔ Pkl + 2sk EC ,kl) = λ

−1
k δkl .

The normalization conditions are thus equivalent.

• For the lossless Darwin system and lossless electrical circuits, the normaliza-
tion condition for the eigenmodes, (6.47) and (6.16) respectively, read

EC ,kl = λ
−1
k δkl ⇔ EC ,kl = λ

−1
k δkl .

For lossless electromagnetic systems, the normalization conditions also
agree.
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• When the eigenmodes satisfy the normalization conditions above, the
impedance for the Darwin model (6.45) and electrical circuits (6.10) can
be written in terms of the eigenmodes

Z = −sδT

�∞
∑

k=1

λk

s− sk
φkφ

T
k

�

δ ⇔ Z= −s AT
s

� Nn
∑

k=1

λk

s− sk
ΦkΦ

T
k

�

As .

(6.50)

For lossless systems, this expression has to be replaced by (6.48) and (6.18)
respectively,

Z = −sδT

�∞
∑

k=1

λk

s2 − s2
k

φkφ
T
k

�

δ ⇔ Z= −s AT
s

� Nn
∑

k=1

λk

s2 − s2
k

ΦkΦ
T
k

�

As .

(6.51)

6.4 An Automated Method for the Construction of Electrical Circuit Models

Field theoretical models in terms of, e.g., Darwin’s model or Maxwell’s model, and
electrical circuit models are both valid models for the description of electrical com-
ponents in a certain frequency domain. In the previous section, we showed that the
frequency range of validity of electrical circuits agrees with the frequency range of
Darwin’s model. Due to this fact and the great similarity between the two mod-
els worked out in the previous section, Darwin’s model can be seen as the field
theoretical generalization of electrical circuits [37, 64].

Based on this observation, we propose in this section a procedure to automati-
cally generate electrical circuit models from an existing field-theoretical model in
terms of Darwin’s equations. More precisely, we condense the 3D Darwin eigen-
modes into a form which can be interpreted as circuit eigenmodes of the associated
electrical circuit. The explicit form of this equivalent electrical circuit can be con-
structed using the procedure in Sect. 6.1.2.

6.4.1 The Basic Method

Our method for the construction of electrical circuit models for electromagnetic
components is based on the following axiom:
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Axiom 6.1. The nodes of the electrical circuit model can be associated with points in
the 3D geometry.

We call a point xk which is associated to the k-th node of the electrical circuit an
electrode. In other words, if an electromagnetic component or system is equipped
with a set of electrodes, these electrodes correspond to the nodes of the electrical
circuit model. For the sake of clarity, we shift the detailed discussion about the
significance and the physical interpretation of the electrodes to Sect. 6.4.3 and
assume for the moment that a set of electrodes is given.

Let {x0, x1, · · · , xn} be this set of electrodes. Further consider a scalar potential
distribution φ(x). We define a vector of potentials by evaluating φ(x) only at the
positions of the electrodes. Mathematically,

Φ̃=









φ(x1)−φ(x0)
φ(x2)−φ(x0)

...
φ(xn)−φ(x0)









= δTφ. (6.52)

For simplicity, we again used the short-hand notation from Sect. 6.2 for the appli-
cation of a vector of delta functions, δk = δ(3)(x − xk) − δ(3)(x − x0). The main
idea of our procedure is to interpret the resulting vector of potentials as the vector
of node potentials for the electrical circuit model. More precisely, let

SDarwin =
��

sk,φk, ~Ek

�

, k = 1, · · · , N
	

(6.53)

be the spectrum of the Darwin equations of motion for some electromagnetic com-
ponent (i.e., for some distribution of conducting, dielectric and magnetic materi-
als). Then for each eigenmode in the spectrum, we can define a vector of node
potentials by projecting them in the electrodes according to (6.52). The projected
Darwin eigenmodes should then be interpreted as circuit eigenmodes of the electri-
cal circuit model with the same eigenfrequencies. At this point, one thing prevents
us from proceeding:

• The maximum number of independent eigenfrequencies which is supported
by the equations of motion of an electrical circuit is equal to n, n+ 1 being
the number of nodes of the electrical circuit8. For typical electrical circuit
models, n® 10.

8 For a lossy electrical circuit, the total number is 2n However, we count each complex conjugate
pair of eigenfrequencies as one independent eigenfrequency only.
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• The Darwin equations of motion as a continuous system of equations sup-
port an infinite amount of eigenfrequencies. After the discretization proce-
dure, the number becomes finite. While the numerical number N of Darwin
eigenmodes depends on the mesh size of the discretization, for any practical
application, n� N .

Due to these considerations, only a very limited number of Darwin eigenmodes
can be reproduced by the electrical circuit model. The choice of eigenmodes is a
priori arbitrary. However, in order to realistically describe the component at low
frequncies, i.e., starting at DC up to some maximum frequency and without skip-
ping resonances in the frequency range of validity, the n lowest eigenfrequencies
have to be chosen. Therefore,

Sec = {(sk,Φk) , k = 1, · · ·n}

=

��

sk, Φ̃k =

∫

δTφkd3 x

��

�

�

�

sk are n lowest Darwin
eigenfreq. with Φ̃k 6= 0

�

.
(6.54)

As a final step, we interpret Sec as the spectrum of the corresponding electrical
circuit model. The electrical circuit model is uniquely determined by its spectrum
and can be constructing by the procedure in Sect. 6.1.

It remains to discuss the properties of the electrical circuits constructed by the
procedure above.

• According to (6.50) and (6.51), the first n poles and residues of the
impedance functions computed from the 3D Darwin model and the elec-
trical circuit model respectively agree with each other.

• According to (6.54), apart from the first n Darwin eigenmodes, no more
eigenmodes are reproduced by the electrical circuit. The corresponding
poles and residues of the Darwin impedance function do not appear in
the impedance function computed from the electrical circuit. The electri-
cal circuit model is compact.

• In other words, an electrical circuit is a mode-reduced representation of
the field-theoretical Darwin model. Such mode-reduced representations fre-
quently appear in the context of model order reduction [135, 136].

• Even though all singularities of the impedance function are correctly mod-
eled in the frequency range of validity, neglecting all eigenmodes outside
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the frequency range of interest can lead to a significant offset error, nega-
tively affecting the accuracy of the electrical circuit model. In Sect. 6.4.3,
we show that the accuracy depends solely on the positions of the electrodes.
The accuracy can be controlled.

• The nodes of the electrical circuit exist as electrodes in the 3D reality. The
electrical circuit has a physical meaning.

It follows that all requirements on valid electrical circuit models which were for-
mulated in the Introduction are satisfied.

6.4.2 Electrode Positioning and the Accuracy of Electrical Circuits

An electrical circuit is, above all, a model for a real electromagnetic device. Before
it can be used in practical applications, its accuracy has to be assessed and possible
sources for inaccuracies have to be identified. Instead of comparing the circuit
model directly with measurement results, we define the field-theoretical model
of Maxwell’s equations as reference. Effects which are not included in Maxwell’s
equations usually do not play any significant role in the devices covered in this
work.

In order to compare an electrical circuit model with the field-theoretical model
of Maxwell’s equations, some quantity has to be used which exists for both mod-
els. We choose this quantity to be the frequency-dependent impedance function,
which can be defined for both models and which has a well-defined physical mean-
ing. Furthermore, the impedance function is usually the quantity of interest for the
characterization of electrical components in an industrial environment. A given
electrical circuit model is accurate, therefore, when it correctly reproduces an
impedance function predicted by Maxwell’s equations. Repeating the steps needed
for the construction of an electrical circuit from a 3D field theoretical models, the
following sources for inaccuracies can be detected:

• The underlying physical model for the construction of electrical circuit mod-
els is Darwin’s model (Sect. 3.4). Darwin’s model is a low-frequency ap-
proximation of Maxwell’s equations. The frequency range of validity for
quasistatics in terms of the quasistatic parameter α = L f /c, see (3.16), is
given by α � 1. Within the range of validity, the error of Darwin’s model
with respect to Maxwell’s model grows as O (α2), [137, 138, 139].

• When the physical eigenmodes are computed using a numerical method, the
reduction of degrees of freedom leads to a discretization error, [140]. If the
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equations of motion of Darwin’s model are discretized using the FEM, it can
be shown that the result converges with increasing mesh size [141].

• Only a limited set of eigenmodes of the field-theoretical model are used
for the construction of the electrical circuit model. When the impedance
functions are written as a rational function, it follows that the impedance
function of the electrical circuit, (6.10), is equal to the impedance function of
the Darwin model, (6.45), with all terms removed which have poles outside
the frequency range of interest. Removing these terms gives rise to another
error.

The error due to using Darwin’s system of equations is an intrinsic error of electri-
cal circuit modeling, i.e., it appears independently of the method used to construct
electrical circuit models. It follows that the maximum frequency of validity for Dar-
win’s model defines the frequency above which an electrical circuit model cannot
be defined in a meaningful way. The error induced by the discretization of a phys-
ical system of equations is well understood and discussed in the literature. In the
following, we will assume that the discretization is sufficiently fine such that no
significant numerical errors are induced.

In this section, we concentrate on the error which is due to the finite number
of eigenmodes. First note that if we allowed the electrical circuit model to be-
come arbitrarily large, we would be able to take into account an arbitrary number
of eigenmodes and thus reach an arbitarily accurate representation of the Darwin
impedance function. In fact, this procedure is followed in some model order re-
duction techniques, [142]. However, the circuits constructed in this way lose their
physical significance and become mathematical expressions reproducing the pole
terms of the impedance function. In this thesis, we restrict ourselves to circuits of
limited size, describing only a limited number of eigenmodes (in practical cases
® 10). The error of the electrical circuit representation of impedance with respect
to the full Darwin model is given by

∆Z(s) = Zcircuit(ω)− ZDarwin(ω)

= δT

�

N
∑

k=n+1

λk

sk − s
φkφ

T
k

�

δ.
(6.55)

where we have used the fact that the first n terms of the impedance functions agree
by construction. In order to condense the matrix-valued, frequency dependent
error into a figure of merit which can be handled more easily, we define the quality
[143] of an electrical circuit by
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Q =Q(δ) =
det(Zcircuit(s = 0))
det(ZDarwin(s = 0))

=
det

�

δT
�

∑n
k=1,sk 6=0

λk
sk
φkφ

T
k

�

δ
�

det
�

δT
�

∑N
k=1,sk 6=0

λk
sk
φkφ

T
k

�

δ
�

= 1−
det(∆Z(s = 0))

det(ZDarwin(s = 0)
.

(6.56)

The quality has the following properties:

• By the properties of the determinant, the scalar quality is independent of the
topology of the current source network and depends only on the positions
of the electrodes. In other words, if the nodes of the circuit are renum-
bered or if the topology of the source network is changed, the corresponding
permutation of rows and columns in δ leaves the determinant invariant.

• The quality is contained in the interval between 0 and 1. Increasing the
quality to a value close to 1 induced an increased accuracy of the electrical
circuit model.

• Intuitively speaking, the quality is maximized if the electrodes are at posi-
tions where the electric scalar potential φ is strong. In other words, the
electrodes should be located at the minima and maxima of the scalar poten-
tial eigenmodes.

In the following section we discuss how the properties of the quality allow to define
a procedure to automatically define optimal electrode positions.

6.4.3 The Importance of Electrode Positioning

In the previous section, we showed that the quality, i.e., the accuracy of an elec-
trical circuit model, is a function of the electrode positions only. In practice, two
situations have to be distinguished:

• The positions of the electrodes are unknown and the node positions should
be determined using an algorithmic scheme.

• The positions of the electrodes have been specified by the user, e.g., because
the user wants to evaluate the impedance function at specific positions.
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In the first case, the optimal positions for the electrodes are exactly those which
maximize the quality, i.e., the resulting electrical circuit model provides the best
accuracy of all possible electrical circuit models. More specifically, it there are N
eigenmodes in the frequency range of interest, the n + 1 = N + 1 nodes needed
for the construction of an electrical circuit with exactly N eigenmodes have to be
chosen according to

{x1, · · · , xn}= arg

�

max
x̃1,··· , x̃n∈R3

Q(δ( x̃1, · · · , x̃n)

�

. (6.57)

In the second case, experience indicates that the user defined nodes can only be
used if their quality is sufficiently high. Otherwise, the electrical circuit elements
can take unphysical values. If the user nevertheless needs to include the elec-
trodes in the electrical circuit model, the user defined set of electrodes has to be
augmented by electrodes at the correct positions. Furthermore, a very large set of
electrodes can lead to the situation that there is not an equal number of eigenmodes
in the frequency range of interest. Adding eigenmodes from outside the frequency
range of interest usually only leads to deterioration of the quality instead of restor-
ing the correct relationship. In this case, the procedure from Sect. 6.4.4 should be
applied.

6.4.4 The Relationship between Modes and Nodes

In Sect. 6.4.1 we showed that the number m of eigenmodes used for the construc-
tion of the electrical circuit is related to the number n+ 1 of nodes of the electrical
circuit model by m = n. In this section, we discuss the situation when the two
numbers are not equal. We restrict ourselves to lossless electrical circuits.

If m > n, there are too many eigenmodes than can be reproduced by the elec-
trical circuit. The problem can easily be remedied by adding further nodes (while
maintaining good quality).

The opposite case, m + 1 < n appears more frequently and there is no obvi-
ous solution. If m < n, the matrices Φ in (6.19) cannot be inverted or, in other
words, the linear systems of equations for the circuit matrices cL-1 and bG in terms of
eigenmodes Φ,

ΦT
bCΦ= Λ ΦT

cL-1Φ= ΛS2,

are underdetermined. This means that an electrical circuit with the desired spectral
properties is not unique and the circuit elements can take arbitrary, even unphysical
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values. In this section, we propose a procedure to recover uniqueness in a well-
defined, physical way. The main idea is to decompose the electrical circuit into a
resonant subcircuit and a non-resonant supply circuit. By definition, the resonant
circuit has to be a complete LC circuit. On the other hand, the supply circuit consists
of indutors only and does not have resonances of its own. The mathematical way
of constructing a non-resonant circuit is to (formally) set the eigenfrequencies of
the circuit to infinity (Sect. 5.1.6). An example of the topology of the resulting
circuit is shown in Fig. 6.3.

Figure 6.3.: Electrical circuit with unequal number of (finite) eigenmodes and elec-
trodes: The capacitive subcircuit comprises the nodes with highest qual-
ity (large circles) only, nodes with low quality (small circles) are con-
nected by inductors only.

More rigorously, the procedure can be decomposed in two steps. The first step
is to choose m+1 nodes to form the resonant electrical circuit. The obvious choice
are the m+ 1 nodes offering the best accuracy,

{x i0 , · · · , x im}= arg
�

max
y0,··· ,ym∈{x0,··· ,xn}

Q(δ(y0, · · · , ym)
�

. (6.58)

Eq. (6.58) is a special case of (6.57) when only existing electrodes are taken into
account. By construction, the reduced electrical circuit exhibits the correct rela-
tionship between the number of nodes and modes. After renumbering if necessary,
we can assume that x i j

= x j , j = 0 · · ·m.

In the next step, the reduced electrical circuit model will be enlarged by the re-
maining electrodes. In order to maintain the equality between the number of nodes
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and the number of modes without introducing further resonances, each additional
electrode is accompanied by an additional eigenmode with (formal) infinite eigen-
frequency. These eigenmodes are constructed in the following way: Decompose all
potential eigenmodes in the following way

Φk = Φk, f ⊕Φk,∞ =
�

Φk, f
Φk,∞

�

, k = 1, · · · , m,

where Φk, f = (φk(x1) − φk(x0), · · · ,φk(xm) − φk(x0)) and Φk,∞ = (φk(xm+1) −
φk(x0), · · · ,φk(xn) − φk(x0)). The additional infinite eigenvalues are specifically
set to zero at the reduced set of nodes,

Φk = 0⊕Φk,∞ =
�

0
Φk,∞

�

, k = m+ 1, · · · , n.

With the additional eigenmodes, the impedance function reads

Z= −s AT
s

� m
∑

k=1

λk

s2 − s2
k

ΦkΦ
T
k

︸ ︷︷ ︸





∗ ∗
∗ ∗





+
n
∑

k=m+1

λkΦkΦ
T
k

︸ ︷︷ ︸





0 0
0 ∗





�

As .

In the pictorial matrices, each star indicates a non-zero block submatrix. For the
construction of the circuit matrices, (6.19) have to be altered,

cL-1 = Φ−T

�

S2
f Λ f 0
0 Λ∞

�

Φ−1
bC= Φ−T

�

Λ f 0
0 0

�

Φ−1. (6.59)

By construction, the capacitance matrix contains zero blocks at the positions of the
additional electrodes. In pictorial form,

bC=

�

∗ 0
0 0

�

.

In other words, only the nodes {x0, · · · , xm} are connected to the capacitive circuit
as desired. The corresponding subcircuit describes exactly the m eigenmodes.

In Chapter 7, this procedure is used in several applications:
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• In Sect. 7.4.2, a battery pack is modeled as an electrical circuit. Only the
batteries themselves form the resonant subcircuit. The external connectors
are modeled as inductors and not connected to the capacitive subcircuit.

• In Sect. 7.3.1, a commutation cell for a solar inverter is modeled as an elec-
trical circuit. In this extreme case, there are no non-zero eigenfrequencies in
the frequency domain of interest. The electrical circuit is thus purely induc-
tive in nature. Capacitors only exist between nodes on disjoint conductors.

6.4.5 Electrical Circuit Models for Lossy Systems

Our method for the construction of equivalent electrical circuits described in the
previous section depends on the basic assumption that the nodes of the electrical
circuit exist as distinguished points in the 3D geometry. Now consider the geometry
of a simple 3D conductor, e.g. a round wire, and its equivalent electrical circuits: It
is well known, e.g., from the description of a conductor in the PEEC method (Sect.
4.4), that a real conductor can be described as a series connection of a resistor and
an inductor. The middle node seems to be a violation of the basic assumption that
all nodes of the electrical circuit exist in reality. Clearly, there is no physical point
which can be associated with it.

In order to remedy this seemingly flaw in the theory, we first note that the mid-
dle node does not have any physical significance and is only needed in order to
assign to the conductor an impedance which can be written as a series connection
of an inductor and a resistor, R + sL. Such a node can thus be safely ignored
in the 3D computation. For the simple conductor geometry, for example, the
scalar potential is evaluated at the end points only. Instead of directly interpret-
ing the resulting vector of scalar potentials as the vector of node potentials of the
equivalent electrical circuit, however, it has to be altered by some auxiliary nodes.
More precisely, for each pair of nodes k and l which are located on the same con-
ductor, an auxiliary node (k, l) is introduced which is assigned a scalar potential
Φ(k, l) = ℜ(Φ(k)) + jℑ(Φ(l). On the level of electrical circuits, the auxiliary node
(k, l) is connected to the node k by an inductor and to the node l by a resistor only,
i.e., the auxiliary node (k, l) is exactly the middle node introduced above.

136

www.Techbooksyard.com



www.manaraa.com

7 Tests and Applications

In this chapter, our method is tested and applied to realistic examples. As sanity check,
we compute electrical circuit models for conductor geometries for which analytical
expression are known and prove the validity of both our method and the implemention.
Our method is then applied to realistic examples describing real products from an
industrial partner, Robert Bosch GmbH, [28].

7.1 Convergence Test

Before starting with practical examples, we check the implementation of the Fi-
nite Element discretization by computing the Maxwell eigenmodes of a rectangular
resonator with perfectly conducting boundaries. The analytical solution for the
eigenfrequencies of a rectangular resonator with side-length L read

fklm =
c

2L

p

k2 + l2 +m2.

The lowest eigenfrequency is three-fold degenerated and given by

f110 = f101 = f011 =
p

2c
L

.

In order to study the convergence of our implementation, we compute the triple
of eigenfrequencies using different meshes and using first and second order basis
functions for discretization. The meshes cover the computational domain homoge-
neously, i.e., there is no adaptive mesh refinement. The accuracy is defined by the
maximum relative error of the triple of eigenfrequencies.

In Fig. 7.1a we show the accuracy relative to different mesh sizes for first and
second order basis functions. For a mesh with N tetrahedral elements, the charac-
teristic edge length is given by l = L/ 3pN . Convergence is plotted with respect to
the dimensionless quantity h = l/L. The numerical result agrees remarkably well
with the theoretically predicted rates of convergence.

For practical purposes, it is even more important to evaluate the efficiency of the
method by comparing the accuracy relative to the number of degrees of freedom.
In 7.1b we show that with the same number of degrees of freedom, the second
order FEM provides significantly higher accuracy.
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Figure 7.1.: Convergence of the triple of lowest eigenfrequencies of a rectangular
resonator
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7.2 Inductive Components

In this section, we discuss inductive components, i.e., components which can be
described by a purely inductive electrical circuit model. Such a description is valid
if two conditions are satisfied:

• All non-zero eigenfrequencies of the component are far above the frequency
domain of interest. In this case, the 1/(s−sk) terms in (6.45) can be replaced
by the frequency-independent approximation 1/(s− sk)∼ −1/sk.

• If there are static eigenmodes, i.e., sk = 0, they do not play a role for the
final analysis. This is usually the case when the component is a bare ge-
ometry, e.g., a Printed Circuit Board (PCB), which has to be populated for
the final analysis. Recall that in this case, the static eigenmodes describe
the capacitances of the bare geometry. When the PCB is populated with
lumped semiconductor devices and lumped capacitors, the capacitances of
the lumped elements are much larger than the capacitances of the bare ge-
ometry. The latter can therefore be neglected without significant loss of
accuracy.

We emphasize that the above considerations do not imply that an eigenmode
analysis of the populated component is not needed, e.g., for EMC analysis. How-
ever, the eigenmode analysis only leads to meaningful results when it is performed
for the final, populated device. In practice, we therefore create an inductive circuit
model for the bare geometry. This inductive circuit model can then be populated
by additional lumped elements on the level of electrical circuits. The eigenmode
analysis is then also performed on the level of electrical circuits.

Before studying practical examples, we also use this section to show results for
some reference geometries where analytical formulae for partial inductances exist.
In addition to the analytical proof in Sect. 6.2.5, we show that the definition of
partial inductances provided by our method agrees with the reference definition
in the PEEC method. More examples for inductance calculations can be found in
[144].

7.2.1 Reference Geometries

Straight Round Wire

The first example is the computation of the partial self inductance and the par-
tial resistance of a straight, round wire, as illustrated in Fig. 7.2. In order to
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compute the partial resistance and inductance at low frequencies (i.e., when the
total impedance is dominated by the resistance and the current flows homoge-
neously through the wire), the wire is modeled as conductor with homogeneous,
finite conductivity of 6× 107 S m−1. In order to compute the partial inductance at
high frequencies (i.e., total impedance is dominated by the inductance and current
flow is restricted to the surface of the wire), the wire is modeled using perfectly
conducting boundary conditions. In the high-frequency limit, no resistance is ex-
tracted. The excitation currents are impressed through facial electrodes (marked
in red) at the end faces of the wire. The partial inductances and resistances are
computed for different radius to length ratios r/l.

Figure 7.2.: Computer Aided Design (CAD) geometry of a straight round wire with
electrodes (red)

For this geometry, an analytical expression for the partial self inductance (4.14)
exists for both the low- and the high-frequency limit, [145],

LLF (l, r)
l

=
µ0

2π

�

log
�

2l
r
−

3
4

��

LHF (l, r)
l

=
µ0

2π

�

log
�

2l
r
− 1

��

RLF (l, r)
l

=
1

πr2σ
.

(7.1)

The comparison between computed and analytical values is shown in Fig. 7.3.
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Figure 7.3.: Partial inductance and resistance of a straight round wire
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Busbar

The second example is the computation of the partial self inductance and partial re-
sistance of a busbar, as illustrated in Fig. 7.4. The busbar is modeled as a conductor
with homogeneous, finite conductivity of 6× 107 S m−1. The excitation currents are
impressed through facial electrodes (marked in red) at the end faces of the busbar.

Figure 7.4.: CAD geometry of a busbar with electrodes (red)

To our knowledge, an analytical expression for the partial self inductance (4.14)
of this geometry exists only in the low frequency limit, [145]. At high frequencies,
there is current crowding at the edges of the conductor and the exact form of the
current is not known, [146]. In the low frequency limit, the partial self inductance
is a function of the aspect ratio ω = T/W , where T and W are the width and
height of the busbar as illustrated in Fig. 7.4. The comparison between computed
and analytical values is shown in Fig. 7.5.
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Figure 7.5.: Partial inductance and resistance of a busbar
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7.2.2 Wireframe Package for Integrated Circuit

Fig. 7.6 shows a wireframe package which is used for the packaging of an in-
tegrated circuit (IC). The CAD model was taken from [65]. For signal integrity
analysis, the knowledge of the partial self inductances of the wires and, in par-
ticular, the partial mutual inductances between neighbouring wires are of crucial
importance.

Figure 7.6.: CAD geometry of a wireframe package for an IC

For this geometry, an analytical formula for the partial self inductances of the
wires and the partial mutual inductances between the wires does not exist. We
therefore compare our results with results from a commercial inductance solver,
ANSYS Q3D [147], which uses the PEEC method.

For the comparison in Fig. 7.7b, we fix one wire (which is marked red in Fig.
7.7a) and compute all partial mutual inductances to the other wires in the wire-
frames. For this purpose, the wires are numbered such that with increasing wire
number, we circle the package once (as indicated by the red arrow in Fig. 7.7a).
The comparison shows that the values of partial mutual inductance for neighbor-
ing wires agree very well. For wires with large spatial separation, the difference is
larger. This is due to the fact that the PEEC method as an integral method excels
at describing long-range interactions. Our implementation is based on a differen-
tial method, the FEM, and excels at describing short-range interactions of complex
current densities. Such geometries are presented in the following sections. The
absolute errors are very small.
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(a) Counting scheme for partial mutual inductances
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Figure 7.7.: Wireframe package results
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7.3 Inductive Components with Static Capacitances

We proceed in this section to the study of inductive components where the capac-
itances between the disjoint conductors are also important, i.e., the static eigen-
modes have to be included in the analysis. This is usually the case when the
capacitances arising from the geometric arrangement of the conductors have the
same order of magnitude as the lumped capacitors used to populate the compo-
nent. An important field of application are multi-layered PCBs, where considerable
capacitances can arise between the different layers of the board.

7.3.1 Commutation Cell for Photovoltaic Inverter

Fig. 7.8 shows a CAD model of a commutation cell for a photovoltaic inverter. This
component was developed as part of the publicly funded project “ögP SOlar” [148].

Figure 7.8.: CAD model of commutation cell

EMC Problems in Commutation Cell

In general, an inverter transforms an Alternating Current (AC) signal to a Direct
Current (DC) signal or vice versa. For example, a photovoltaic inverter transforms
a DC voltage from the solar cells to an AC current which can be fed into the electric
power grid. An inverter consists of two basic components: The commutation cell
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chops the DC signal into a periodic series of pulses, a filter then smooths the pulse
functions into a sinusoidal signal.

In this example, analysis is restricted to the commutation cell. The basic func-
tioning of the commutation cell is visualized in Fig. 7.9. The voltage source charges
the voltage link capacitors Cl such that there is a voltage drop of V/2 at each of the
two capacitors. When T1 is switched on and T0 is switched off, the current flows
along the blue line and there is a voltage drop V/2 at the load. In the opposite
case, T1 off and T0 on, the current flows along the red line and there is a voltage
drop −V/2 at the load. In particular, the direction of the current flow through the
load is reversed. When the two configurations are applied alternatingly, there is an
effective AC current through the load.

T1

T0

nd

Cl

Cl

L

Figure 7.9.: Electrical circuit for ideal commutation cell: voltage link capacitors Cl ,
dynamical node nd , IGBTs T0 and T1, load L

A real commutation cell suffers from different parasitic effects, deteriorating
device performance. The two most frequent parasitic processes are visualized in
Fig. 7.10 and Fig. 7.11: In Fig. 7.10a, it is shown that parasitic capacitances
in parallel with the IGBTs offer an alternate path for the time-dependent current
(dashed). This leads to an increase of the current through the IGBTs, Fig. 7.10b
and a deterioration of efficiency. In Fig. 7.11a, the connection between the link
capacitors and the IGBTs is modeled by a parasitic inductor to account for a con-
ductor with non-zero physical length. During the switching process, the currents
through the inductor change from zero to full current or vice versa. This leads to
an induced voltage overshoot at the IGBTs. In order to keep the peak voltage below
the breakdown voltage of the semiconductor and prevent damage of the IGBTs, the
switching times cannot become arbitrarily short. Slow switching, however, again
leads to deterioration of the efficiency of the inverter.
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Figure 7.10.: EMC problems in commutation cell I: parasitic capacitors

T1

T0

nd

Lp

Lp

Cl

Cl

L

(a) Parasitic inductors Lp in
commutation cell...

0 T/10

0

V

Vb

Semiconductor Breakdown

Time

V
o

lt
a

g
e

 a
t 

IG
B

T

 

 

Fast Switching
Slow Switching

(b) ... lead to voltage overshoots at IGBTs.

Figure 7.11.: EMC problems in commutation cell II: parasitic inductors
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Equivalent Electrical Circuit

In the above section, we showed that the main parasitic processes in a commutation
cell can be explained on the level of electrical circuits. The values of the parasitic
elements are determined by the 3D design of the commutation cell only. This en-
ables us to compute them in a 3D simulation of the bare geometry, i.e., without the
need to include the lumped elements (e.g., link capacitors, IGBTs). The behavior of
the complete commutation cell can be simulated on the level of electrical circuits,
i.e., by inserting the lumped elements in the equivalent electrical circuit for the 3D
geometry.

In this section, we construct an electrical circuit model for the bare geometry
of the commutation cell in Fig. 7.8. An eigenmode analysis shows that the low-
est eigenfrequency is ≈ 500 MHz which is far higher than the highest frequency
of interest given by the typical rise time of the current pulses, τrise ≈ 100 ns,
fmax ≈ 0.35τ−1

switching = 3.5 MHz. It thus suffices to construct an electrical circuit
consisting of inductances and augmented by those capacitances which belong to
static eigenmodes only.

The positions of the electrodes are shown in Fig. 7.12a. The electrodes corre-
spond to the nodes of the equivalent electrical circuit model in Fig. 7.12b. The
electrical circuit can be decomposed into two subcircuits, an inductive subcircuit
and a capacitive subcircuit. The inductive subcircuit consists of four disjoint parts.
Each disjoint part corresponds to one disjoint conductor. According to Sect. 6.1, the
inductive subcircuit does not form closed loops. The capacitive subcircuit, on the
other hand, connects the disjoint conductors, i.e., it connects the inductive subcir-
cuits. Note, first, that the capacitive subcircuit is connected. In the physical reality,
each pair of separate conductors shares a common capacitance. Note, second, that
from the set of all nodes on the same conductor, only one node is chosen to be part
of the capacitive subcircuit. The full circuit therefore does not have cycles contain-
ing both inductive and capacitive elements, i.e., by construction, the circuit does
not exhibit resonances at finite, non-zero frequencies. The values of the partial self
inductances and capacitances of the electrical circuit are tabulated in Fig. 7.13.
The values for the partial mutual inductances are tabulated in Appendix A.
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(a) Electrode positions for commutation cell
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(b) Electrical circuit model for commutation cell

Figure 7.12.: Commutation cell: electrodes and equivalent electrical circuit
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L [nH] LQ3D [nH] ∆ [%]
L1 5.3 5.3 1
L2 3.4 3.3 3
L3 1.2 1.1 8
L4 3.5 3.4 3
L5 1.4 1.5 4
L6 5.8 6.0 3
L7 1.5 1.5 6
L8 1.1 1.0 11
L9 2.0 2.1 7
L10 4.5 4.5 1
L11 1.1 0.9 13
L12 2.0 2.2 6

C [pF] CQ3D [pF] ∆ [%]
C1 2.19 2.05 7
C2 2.45 2.65 9
C3 0.82 0.87 6
C4 0.40 0.37 10
C5 0.34 0.33 3
C6 0.43 0.43 1

Figure 7.13.: Commutation cell: electrical circuit element values
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7.4 Components exhibiting LC resonances

In the examples discussed in this section, the frequency range of interest reaches
beyond the first non-zero eigenfrequency. This is the most general case and the
electrical circuit models also have to describe the resonant behavior of the device.

7.4.1 Transformer

Fig. 7.14 shows a CAD model of a typical transformer for power electronics ap-
plications. In general, a transformer consists of two windings, a primary winding
which is connected to an electrical energy source, and a secondary winding which
is connected to an electrical load. When an AC voltage is applied to the primary
winding, an AC voltage is induced in the secondary winding. For an ideal trans-
former, the voltage ratio α= V2/V1 between the primary and the secondary winding
is determined by the ratio of winding turns N1 and N2 respectively, α = N2/N1. A
real transformer exhibits loss mechanisms, e.g. stray magnetic fields and magnetic
losses in the core, leading to a lower voltage ratio. In order to increase the max-
imum current supported by the transformer, a transformer can be constructed by
connecting several identical transformer in parallel.

Figure 7.14.: CAD drawing of transformer

The primary winding of the transformer considered in this work consists of two
parallel coils, which are stacked above each other. Each coil has 13 turns. The sec-
ondary side consists of three parallel coils, each coil having one turn. The winding
ratio is thus N2/N1 = 1/13. In order to minimize stray magnetic fields, the trans-

152

www.Techbooksyard.com



www.manaraa.com

former is equipped with a highly permeable core consisting of N97 material with
constant permeability µr = 2300.

A description of transformers including parasitic elements is important whenever
the transformer is used to transform high-frequent signals. For example, in [149],
a detailed model is derived to model the parasitic capacitances of transformer used
for very short voltage pulses.

Eigenmode Computation

In order to numerically compute eigenmodes, the Darwin system (3.19) is dis-
cretized using the second order FEM. The eigenmodes of the resulting generalized
eigenvalue problem were computed using the Lanczos method, described in Sect.
5.2.3. The eigenmode plots were generated using Paraview, [150]. Only the scalar
potential part φk of the Darwin eigenmodes (φk,Ek) was plotted.

The first eigenmodes have eigenfrequencies 0.34 MHz, 44.7 MHz, and 64.3 MHz.
The corresponding eigenmodes are shown in Fig. 7.15. Note that there is a gap
of two orders of magnitude between the first eigenmode in the spectrum and all
following eigenmodes. This gap is due to the symmetrical nature of the transformer,
which is essentially a parallel connection of several coils. It can be seen from Fig.
7.15 that the first eigenmode is symmetrical with respect to the parallel coils while
all higher eigenmodes are asymmetrical.
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(a) 0.34 MHz

(b) 44.7 MHz

(c) 64.3 MHz

Figure 7.15.: Transformer: scalar potential of Darwin eigenmodes with lowest
eigenfrequency
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Computation of node positions

From Fig. 7.15 we can see that while there are large voltage variations of the
eigenmodes on the primary winding, there is only little variation on the secondary
winding. Intuitively, this can be understood by noting that the higher number
of turns on the primary side and the smaller distance between the turns leads
to higher values for the inductances and capacitances associated to the primary
windings than to the secondary windings. The eigenfrequencies being of the order
1/
p

LC , we conclude that the low-frequency eigenmodes are essentially due to the
primary winding only.

Based on the above considerations, we assign two nodes to the secondary side,
at each end point of the windings. The nodes on the secondary winding allow to
express the voltage along the secondary winding in terms of the equivalent electri-
cal circuit. The number of nodes assigned to the primary winding depends on the
frequency range of interest:

• If only the first resonance is of interest, it suffices to choose two nodes on
the primary windings. Inspecting the first eigenmode (Fig. 7.15a), we con-
clude that the nodes have to be chosen at the terminal points of the primary
windings, where the potential associated to the first eigenmode is extremal.

• If more resonances are of interest, further nodes have to be added. In this
investigation, we construct an equivalent electrical circuit which is valid up
to the third resonance. In Fig. 7.15, we see that the high-frequency eigen-
modes arise from oscillations between the different layers of the primary
windings. We thus assign one node to each layer.

We will treat both cases and show, how the frequency range of validity depends
on the number and position of the nodes. The positions of the nodes for the two
cases are shown in Fig. 7.16.
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(a) Node positions for equivalent electrical circuit describing the
first dynamical resonance

(b) Node positions for equivalent electrical circuit describing the
first three dynamical resonances

Figure 7.16.: Node positions for the transformer
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Equivalent Circuit Representation

The equivalent electrical circuit for the transformer can be constructed from the
eigenmodes computed in the previous section. We construct first the most simple
equivalent electrical circuit describing the first eigenmode with non-zero eigenfre-
quency only. For this, we use the first eigenmode in Fig. 7.15a only and choose the
node positions as in Fig. 7.16a. The resulting electrical circuit model is shown in
Fig. 7.17. Note that only three nodes are part of the capacitive subcircuit according
to the analysis in Sect. 6.4.4. This is because only two eigenmodes are taken into
account - one static eigenmode and one eigenmode with non-zero eigenfrequency.

C01 L1

C02

C
12

L2

• •

0

1

2

3

(a) Topology
L µH

L1 2580
L2 15

K %
K12 99.1

C pF
C01 78.5
C02 12.2
C12 13.5

(b) Element values

Figure 7.17.: Electrical circuit model for the transformer (1 resonance)

We next construct an equivalent electrical circuit with a larger frequency range
of validity. In particular, we want the equivalent electrical circuit to describe the
resonances at 44.7 MHz and 64.3 MHz also. The equivalent circuit in Fig. 7.17 then
necessarily has to be enlarged by adding further nodes. As argued above, we use
the node positions in Fig. 7.16b. The equivalent electrical circuit then takes a more
complicated form shown in Fig. 7.18. For simplicity, in Fig. 7.18 we only show the
inductive subcircuit. We implicitely assume that for each pair (k, l) of nodes, there
exists a capacitor Ckl between them and we refrain from showing them explicitly
in Fig. 7.18.

Note that in the equivalent electrical circuit in Fig. 7.18 the parallel structure of
the real transformer in Fig. 7.14 is resolved, unlike the first equivalent electrical
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(a) Topology: It is assumed implicitly that for each pair of nodes (k, l) there exists a capaci-
tance Ck,l . Each pair of inductors shares a mutual inductance.

L µH
L1 305
L2 381
L3 190
L4 305
L5 381
L6 190
L7 15

K %
K12 99.0
K13 99.8
K14 99.7
K15 99.4
K16 99.7
K17 99.1
K23 99.4
K24 99.4
K25 99.4
K26 99.7

K %
K27 99.0
K34 99.7
K35 99.7
K36 99.7
K37 99.2
K45 99.0
K46 99.8
K47 99.1
K56 99.4
K57 99.0
K67 99.2

C pF
C01 13.4
C02 44.5
C03 2.7
C04 43.2
C05 3.5
C06 3.2
C07 0
C12 2.7
C13 0.4
C14 38.9
C15 20.5
C16 6.2
C17 0
C23 22.3

C pF
C24 20.8
C25 9.8
C26 3.3
C27 0
C34 2.7
C35 0.4
C36 5.9
C37 0
C45 23.0
C46 3.3
C47 0
C56 3.7
C57 0
C67 0

(b) Element values

Figure 7.18.: Electrical circuit model for the transformer: 3 resonances

circuit from Fig. 7.17. This is because the eigenmodes at higher frequencies, Fig.
7.15b and 7.15c, are asymmetrical with respect to the parallel structure of the
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transformer, while the first eigenmode in Fig. 7.15a respects the symmetry of the
parallel structure and therefore cannot resolve it.

Impedance Comparison

In order to check the accuracy of the equivalent circuit, we compute the impedances
at the terminal ports of the primary and secondary windings and compare the result
with a 3D field simulation using the Darwin model. For brevity, we restrict ourselves
to Z12, the transfer function from the primary to the secondary winding. For the
simple electrical circuit model in Fig. 7.17, the results are plotted in Fig. 7.19.
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Figure 7.19.: Transformer: comparison of the equivalent electrical circuit in Fig. 7.17
with 3D simulations

As expected, there is very good agreement in the low-frequency regime up to ap-
proximately 10 MHz. By construction, the equivalent electrical circuit correctly
reproduces the first singularity in the impedance function. In order to describe res-
onances at higher frequencies, the more complex equivalent electrical circuit in Fig.
7.18 has to be used. By construction, it extends the range of validity beyond the
second and third singularity. For verification, we again compute Z12 and compare
the result with a 3D simulation using the Darwin model, Fig. 7.20.

159

www.Techbooksyard.com



www.manaraa.com

3e4 1e5 3e5 1e6 3e6 1e7 3e7 1e8

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Z
(ω

) 
in

 [
Ω

]

 

 

3e4 1e5 3e5 1e6 3e6 1e7 3e7 1e8

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

∆
(ω

) 
in

 [
Ω

]

f in [Hz]

3D Simulation
Electrical Circuit
Absolute Error

Figure 7.20.: Transformer: comparison of the equivalent electrical circuit in Fig. 7.18
with 3D simulations

160

www.Techbooksyard.com



www.manaraa.com

7.4.2 Battery Pack

Fig. 7.21 shows a battery pack from the automotive industry. In general, a battery
pack consists of several identical battery cells which are connected in parallel or in
series in order to maximize current or voltage respectively. In a real battery pack,
the battery cells may behave differently due to manufacturing tolerances or degra-
dation. In order to optimize the overall performance of the battery pack, i.e. in
order to have maximum flexibility regarding load profiles at maximum lifetime, it
is crucial that the load is distributed among the cells such that each battery cell is
used most efficiently. This requires that each battery cell is monitored individually.
For this, each battery cell is equipped with a sensor operating at a sufficiently high
frequency to avoid interference with the operating mode of the battery. We are thus
interested in the behavior of the battery pack at relatively high frequencies, espe-
cially in resonance effects which might interefere with sensor signals. In particular,
in order to make the sensor signals robust to interference, we aim at specifying
an operating frequency which is far away from any resonance of the battery pack
system. The operating frequency therefore has to be defined either below the first
eigenfrequency or, if it exists, in a gap in the spectrum.

Figure 7.21.: CAD drawing of battery pack

The battery pack considered in this work consists of four battery cells which are
connected in series. Each battery cell is packed into a metallic housing of 15 cm
times 9.0 cm times 3 cm. The housings are 4 mm apart, the gaps between the bat-
tery cells are filled with non-conducting, dielectric lacquer. The series connection
of the battery cells is formed by conducting bars connecting the electrodes. Ad-
ditionally, the first and the last electrode are connected to a terminal port. Our
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investigations concentrate on frequencies which are much higher than the typical
time-scales of the chemical processes in the batteries. The batteries are therefore
modeled as conductors, the DC currents are not included in the investigations.
Furthermore, damping is unimportant for our investigations. All conductors, i.e.
the housings and the connecting bars of the battery cells, are modeled as perfect
electric conductors.

Eigenmode Computation

In order to numerically compute eigenmodes, we discretized the Darwin system
(3.19) using the second order FEM. The eigenmodes of the resulting generalized
eigenvalue problem were computed using the Lanczos method, described in Sect.
5.2.3.

The lowest eigenmodes have eigenfrequencies 77 MHz, 82 MHz, 83 MHz, and
330 MHz, [143]. While the first three eigenfrequencies are closely clustered, there
is a gap of roughly one order of magnitude between the third and the fourth eigen-
frequency. It is advisable to choose the operating frequency inside this gap. Above
the fourth eigenfrequency, the spectrum becomes increasingly dense. Only the first
three eigenfrequencies are in the frequency range of interest. The corresponding
eigenmodes are shown in Fig. 7.22. The eigenmode plots were generated us-
ing Paraview, [150]. Only the scalar potential part φk of the Darwin eigenmodes
(φk,Ek) was plotted.
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(a) 77 MHz

(b) 82 MHz

(c) 83 MHz

Figure 7.22.: Battery pack: scalar potential of Darwin eigenmodes with lowest
eigenfrequency
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Computation of node positions

Studying the eigenmodes in Fig. 7.22a-7.22c, we see that the eigenmodes are
essentially oscillations of the battery cells relative to each other. In particular, each
cell itself is an equipotential volume. We therefore assign one electrode to each
of the battery cells. According to Sect. 6.4.4, these four nodes can be used to
construct an electrical circuit with exactly three eigenfrequencies. The electrodes
are numbered as 0-3 in Fig. 7.23.

Figure 7.23.: Battery pack: electrode positions

We add two more nodes, labeled 4 and 5 in Fig. 7.23, at the end points of the
terminal port. While these nodes do not participate in the resonant behavior, they
can be used to compute the impedance at the terminal.
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Equivalent Circuit Representation

The equivalent electrical circuit for the battery pack can be constructed from the
eigenmodes computed in the previous section. We emphasize that the resonant
behavior can be described entirely by the subcircuit comprising nodes 0-3 only,
[143]. According to the discussion in Sect. 6.4.4, nodes 4 and 5 are not included
in the capacitive network and are connected to nodes 0-3 by inductors only.

The inductance matrix L and the capacitance matrix C are computed from the 3D
eigenmodes according to the procedure in Sect. 6. The resulting circuit is shown
in Fig. 7.24.
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(a) Topology: It is assumed implicitly that each pair of inductors shares a common partial
mutual inductance.

L nH
L1 50.2
L2 32.8
L3 32.8
L4 32.9
L5 27.0

C pF
C01 113
C02 2.4
C03 4.3
C12 111
C13 2.2
C23 113

K %
K12 3.4
K13 -2.2
K14 1.2
K15 -0.8
K23 0.1
K24 -0.1
K25 1.2
K34 0.01
K35 -3.1
K45 3.1

(b) Element values

Figure 7.24.: Electrical circuit model for the battery pack
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Impedance comparison

In order to check the accuracy of the equivalent circuit, we compute the impedance
at the terminal port and compare the result with a 3D field simulation using the
Darwin model. The results are plotted in Fig. 7.25.
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Figure 7.25.: Battery pack: Comparison of the impedance from the 3D simulations
and the equivalent electrical circuit

As expected, there is very good agreement in the low-frequency regime up to
100 MHz. By construction, the equivalent electrical circuit correctly reproduces
the first three singularities in the impedance function. The equivalent circuit does
not reproduce singularities at higher frequencies. If needed, further resonances can
be included by adding further nodes, thus enlarging the equivalent circuit.
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8 Conclusion

In this thesis, we presented an automated procedure to construct electrical circuit mod-
els for electromagnetic components or systems. The method is formulated on the level
of field equations, i.e., it is very general and can be implemented numerically using
any scheme for the discretization of partial differential equations. With a reference im-
plementation using the FEM, the validity and feasibility of the procedure was shown.
In this chapter, we will shortly reiterate the necessary steps for the method. We will
sum up the main contributions of this work and show future extensions and fields of
applications.

8.1 Summary

In Chapter 1, we formulated three requirements for electrical circuit models to be
valid and useful models for electromagnetic components and systems:

• Compactness: The electrical circuit model is as compact as possible while
reproducing all relevant interactions in the frequency range of interest.

• Physicality: The elements of the electrical circuit model can be related to
physical properties of the electric component or system.

• Accuracy: The accuracy of the electrical circuit is controllable and respects
with user-defined limits.

In this thesis, we proposed an automated procedure for the construction of such
models. The main steps of our method are:

1. Taking as input a 3D CAD model of the electromagnetic component or sys-
tem, including material data and boundary conditions.

2. Equipping the 3D model with electrodes. These electrodes will become the
nodes of the electrical circuit model. The relationship between electrodes
and nodes provides the link between the circuit model and the 3D model,
i.e., the circuit satisfies the physicality requirement. The locations of the
nodes depend on the application, they can be defined by the user or they
can be determined by an automated procedure (Sect. 6.4.3).
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3. Describing the electromagnetic properties of the component or system by an
appropriate physical model. Instead of Maxwell’s equations, we use a qua-
sistatic approximation, Darwin’s model (Sect. 3.4.3). Darwin’s approximate
model removes from Maxwell’s equations all phenomena which cannot be
explained by electrical circuit models (Sect. 6.2).

4. Computing the electromagnetic eigenfrequencies and eigenmodes of the
component or system. Comparing the eigenfrequencies with the frequency
range of interest allows us to separate relevant from irrelevant interactions
(Sect. 6.4.4). Removing irrelevant effects allows us to construct very com-
pact circuit models, i.e., the circuit models satisfy the compactness require-
ment.

5. Using a projection procedure to map the 3D eigenmodes on circuit eigen-
modes of the corresponding electrical circuit model (Sect. 6.4).

6. The projection procedure can be controlled strictly to yield a very direct
measure for accuracy of the electrical circuit model, thus guaranteeing the
accuracy requirement. The accuracy is a function of two parameters only,
the number and the locations of the electrodes.

7. Computing the explicit form of the electrical circuit model from the circuit
eigenmodes (Sect. 6.1.2).

Our procedure is formulated on the basis of electromagnetic field equations and cir-
cuit equations. This allows for very general numerical analysis. More precisely, the
procedure can be implemented using any numerical scheme for the discretization
of partial differential equations, thereby exploiting the advantages of the individ-
ual schemes. In particular, the computation of partial inductances has been made
available to numerical schemes different from the PEEC method.

In the course of this thesis, a reference implementation was developed based on
the FEM. Using the FEM, complex geometries and dielectric or permeable mate-
rials can be described very easily. The implementation uses first or second order
basis functions for the scalar potential, and, correspondingly, first and second or-
der Nedelec basis functions for the vector potential. An eigenmode solver was
implemented based on the Lanczos method. This eigenmode solver handles lin-
ear eigenvalue problems only, thereby restricting the field of application to lossless
electromagnetic systems. The extension of the formalism to quadratic eigenvalue
problems for lossy electromagnetic components or systems was described in the
course of this work. However, the numerical implementation goes beyond the
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scope of the work. By interfaces to commercial software, the implementation
can be embedded in the simulation workflow at industrial companies. Selected
use-cases were shown in this work. The validity and functionality of the approach
was proven. At present, the implementation is in use at Robert Bosch GmbH, [28],
for purposes of EMC analysis of existing and future products.

8.2 Contributions

In the course of this work, many techniques and results have been used. Not all of
them are new and innovative. In this section, we point out our own contributions
and contributions taken from other authors.

• The relationship between Darwin’s model and electrical circuits is well
known in literature. Some references are given in the corresponding sec-
tions. Similarly, the description of electromagnetic components and devices
using partial circuit elements has been the subject of long-time research. The
definitions and properties of partial circuit elements in Sect. 4.4 were taken
from the cited references in the section.

• The definition of partial circuit elements using a system of partial differen-
tial equations (Sect. 6.2) has not been stated in this form before. More
precisely, the method of incorporating lumped current sources into the field-
theoretical equations of motion, (6.32) and (6.33), has not been stated ex-
plicitely before.

• The theory of polynomial eigenvalue problems, Chap. 5, is well known in
the literature. However, to our knowledge, the juxtaposition of the spectral
content of electrical circuits and the spectral content of Darwin’s model, Sect.
6.3, and the similarities of the spectral content have not been shown before.

• Electrical circuit models have been constructed from model-order reduced
representations of an impedance function in the literature. However, these
models usually suffer from a lack of physicality. The novel feature in this
work is the construction of electrical circuits from circuit eigenmodes which
guarantee the physicality of the electrical circuit models.

• In the course of this work, numerical methods have been used for the dis-
cretization of the field-theoretical model and for the computation of 3D
eigenmodes. Third-party software is referenced at the appropriate posi-
tions in the thesis. The Finite Element discretization for Darwin’s model
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and the Lanczos algorithm for the solution of the matrix eigenvalue problem
have been implemented by the author. The implementation is largely based
on existing procedures from the literature cited in this thesis.

8.3 Outlook

The method presented in this paper can be applied to a wide range of electromag-
netic problems in an academic and industrial environment.

• The restriction of the implementation to lossless systems is sufficient for EMC
analysis, concentrating on high-frequency effects. Extending the implemen-
tation to describe lossy systems requires the solution of quadratic eigenvalue
problems. However, with the additional numerical effort, electrical circuit
models can be constructed which are valid from the DC regime to high-
frequencies, i.e., the entire frequency domain of operation can be covered.

• In order to use electrical circuit models in multi-domain optimizations of
electricomagnetic components and systems, it is highly desirable to express
the circuit elements in terms of geometry parameters. With this knowledge,
any sensitivity analysis on the level of electrical circuits can immediately be
generalized to a sensitivity analysis of design parameters. It is promising,
therefore, to combine the method presented in this work with existing work
on parametric model order reduction.
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A Mutual Inductances of Commutation Cell

M [%] MQ3D [%] ∆abs [%] M [%] MQ3D [%] ∆abs [%]
M1−2 22.7 24.5 1.8 M4−8 -11.6 -14.3 2.7
M1−3 -5.9 -6.6 0.7 M4−9 -7.4 -8.1 0.7
M1−4 -25.5 -25.5 0.1 M4−10 27.7 27.4 0.3
M1−5 3.9 2.6 1.4 M4−11 -8.1 10.1 2.0
M1−6 -37.1 36.3 0.7 M4−12 -6.0 -6.8 0.8
M1−7 -4.5 -5.8 1.3 M5−6 10.8 12.8 2.0
M1−8 2.5 4.1 1.6 M5−7 10.5 12.3 1.8
M1−9 4.9 3.8 1.1 M5−8 21.7 29.4 7.7
M1−10 -59.0 -58.4 0.5 M5−9 8.6 10.4 1.8
M1−11 -14.8 -13.3 1.5 M5−10 -5.5 -3.3 2.2
M1−12 -5.2 -4.5 0.8 M5−11 12.7 14.8 2.1
M2−3 -9.5 -9.8 0.3 M5−12 7.2 8.5 1.3
M2−4 -32.3 -32.2 0.1 M6−7 -10.6 -9.6 1.0
M2−5 -1.7 -3.0 1.3 M6−8 17.5 15.7 1.8
M2−6 -26.8 -26.6 0.2 M6−9 3.4 3.5 0.1
M2−7 -3.5 -4.4 0.9 M6−10 49.5 48.5 0.9
M2−8 -14.8 -14.4 0.4 M6−11 -7.7 -9.4 1.8
M2−9 -5.6 -5.1 0.5 M6−12 -5.3 -5.0 0.2
M2−10 -28.8 -29.0 0.2 M7−8 13.5 16.4 2.9
M2−11 -7.3 -7.1 0.2 M7−9 7.6 9.3 1.7
M2−12 -2.9 -3.3 0.4 M7−10 5.8 7.5 1.7
M3−4 1.5 3.7 2.2 M7−11 23.2 30. 7.3
M3−5 -13.1 -16.2 3.1 M7−12 8.9 10.7 1.8
M3−6 -6.9 -7.2 0.3 M8−9 19.6 21.4 1.8
M3−7 -7.0 -9.6 2.6 M8−10 -8.0 -10.6 2.6
M3−8 -23.6 -28.3 4.7 M8−11 20.2 23.4 3.2
M3−9 -14.6 -17.3 2.6 M8−12 11.7 13.8 2.2
M3−10 1.4 1.6 0.2 M9−10 2.5 2.9 0.4
M3−11 -10.1 -13.2 3.1 M9−11 12.7 14.5 1.8
M3−12 -6.8 -8.9 2.1 M9−12 9.3 10.5 1.2
M4−5 -20.7 -21.4 0.7 M10−11 24.2 22.4 1.8
M4−6 17.2 16.4 0.8 M10−12 -3.0 -3.0 0.0
M4−7 -6.6 -7.4 0.8 M11−12 20.5 22.3 1.8
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C Lists of Abbreviations and Symbols

Abbreviations

3D 3-dimensional.
AC Alternating Current.
CAD Computer Aided Design.
DC Direct Current.
DG Discontinuous Galerkin.
EMC Electromagnetic Compatibility.
EMI Electromagnetic Interference.
FEM Finite Element Method.
HPC High-Performance Computing.
IGBT Insulated-Gate Bipolar Transistor.
MKL Math Kernel Library.
MPI Message Passing Interface.
CST MWS CST Microwave Studio ®.
PCB Printed Circuit Board.
PEEC Partial Element Equivalent Circuit.
PETSc Portable Extensible Toolkit for Scientific

Computation.
rPEEC Retarded Partial Element Equivalent Cir-

cuit.
SI Lanczos Shift-and-Invert Lanczos.
RFID Radio-Frequency Identification.
VLSI Very Large Scale Integrated.

Mathematical Symbols and Operators

R Set of Real Numbers.
C Set of Complex Numbers.
j Imaginary Unit.
ℜ Real Part of a Number.
ℑ Imaginary Part of a Number.
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t Time.
x Point in 3D Space.
F Fourier Transform.
ω Angular Frequency.
s Complex Frequency, s = jω.
δkl Kronecker Delta.
δ(t − t ′) Dirac Delta Function.
δ(3)(x − x ′) Dirac Delta Function in 3D.
X Finite-Dimensional Vector Space.
⊕ Direct Sum.
rank Rank of a Matrix.
det Determinant of a Matrix.
ker Null Space of a Matrix.
〈◦,◦〉 Scalar Product.
1 Identity Matrix.
∇ Nabla Operator.
∇· Divergence Operator.
∇× Curl Operator.
∆ Laplace Operator.
da 2D Surface Integration Element.
d3 x 3D Integration Element.
O Order of Magnitude.

Electrical Circuits

I Electrical Current in Circuit.
V Electrical Voltage in Circuit.
E Electrical Energy.
P Electrical Power.
R Resistance.
L Inductance.
C Capacitance.
A Incidence Matrix of an Electrical Circuit.
B Fundamental Loop Matrix of an Electrical

Circuit.
I Vector of Edge Currents.
IR Vector of Currents in Resistors.
IL Vector of Currents in Inductors.
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IC Vector of Currents in Capacitors.
Is Vector of Currents in Sources.
V Vector of Edge Voltages.
VR Vector of Voltages across Resistors.
VL Vector of Voltages across Inductors.
VC Vector of Voltages across Capacitors.
Vs Vector of Voltages across Sources.
AR Incidence Matrix of the Resistive Subcir-

cuit.
R Resistance Matrix.
bG Resistive Circuit matrix, bG= AR R−1 AT

R.
AL Incidence Matrix of the Inductive Subcir-

cuit.
L Inductance Matrix.
cL-1 Inductive Circuit Matrix, cL-1 = AL L−1 AT

L .
AC Incidence Matrix of the Capacitive Subcir-

cuit.
C Capacitance Matrix.
bC Capacitive Circuit Matrix, bC= AC CAT

C .
As Incidence Matrix of the Source Subcircuit.
Φ Vector of Node Potentials.
Q Vector of Node Charges.
Z Z Parameter Matrix.

Macroscopic Electrodynamics

ρ Electric Charge Density.
~j Electric Current Density.
~E Electric Field Strength.
~B Magnetic Field Strength.
~D Electric Displacement Field.
~H Magnetizing Field.
ε Electric Permittivity.
ε0 Dielectric Constant.
µ Magnetic Permeability.
µ0 Magnetic Constant.
σ Electric Conductivity.
~A Magnetic Vector Potential.
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φ Electric Scalar Potential.
u Electromagnetic Energy Density.
P Potential Matrix.

Discrete Electrodynamics

D System of Partial Differential Equations.
u Excitation Function.
f Unknown Function.
Ω Computational Domain.
∂Ω Boundary of Computational Domain.
H (Ω) Vector Space of Functions defined on Ω.
H D(Ω) Discretization ofH (Ω).
f D Discretization of f , Element ofH D(Ω).
φi Nodal FEM Basis Function.
~vi j FEM Edge Basis Function.
~mk PEEC Basis Function, Current Cell.
vl PEEC Basis Function, Charge Cell.

Spectral Theory

L(s) Matrix Polynomial.
Ak Coefficient Matrix in Matrix Polynomial.
σ Spectrum of Matrix Polynomial.
sk k-th Eigenvalue.
xk k-th Right Eigenvector.
yk k-th Left Eigenvector.
αk Algebraic Multiplicity of k-th Eigenvalue.
βk Geometric Multiplicity of k-th Eigenvalue.
C1 First Companion Form.
C2 Second Companion Form.
J Jordan Matrix.
(X,J,Y) Canonical Triple of Matrix Polynomial.
x̄ Element-Wise Complex Conjugate of x.
A†

k Complex Conjugate of Ak.
λk Normalization Coefficient for the k-th

Eigenvector.
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Λ Diagonal Matrix of Normalization Coeffi-
cients.

Kk Krylov Space after k Iterations.

Equivalent Electrical Circuits

sk k-th Complex Eigenfrequency.
S Diagonal Matrix of Eigenfrequencies.
Φk Vector of Node Potentials of k-th Circuit

Eigenmode.
Φ Matrix of Circuit Eigenmodes.
φk Scalar Potential of k-th Darwin Eigenmode.
λk Normalization Coefficient for k-th Eigen-

mode.
Λ Diagonal Matrix of Normalization Coeffi-

cients.
~jσ Conduction Current.
~jD Displacement Current.
g Auxiliary Function for Current Source

Modeling.
Pkl Contribution from k-th and l-th Eigenmode

to Total Dissipated Power.
EC ,kl Contribution from k-th and l-th Eigenmode

to Total Capacitive Energy.
LLF Low-Frequency Inductance.
LHF High-Frequency Inductance.
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